
January 17, 2019

Thermonuclear Falcons
18-0288

January 17, 2019

Introduction
As with any Botball team, the code and programming portion of the robots is an

integral component of their functionality and usability. The code’s purpose is to allow the
robot to sense its environment, move around and interact with it, and organize its actions into
a sequence that can be performed on the game board to complete objectives. This means it
allows the robot to orient itself, controls its movement, and allows it to pick up or move
objects into designated areas to score points. The code was written by our programming
team, consisting of myself (Ziad) as the lead, along with programmers Juntae, Maytham, Oroni,
and Waddah.

Best Practices

Criterion Completed? Notes

Code uses functions to
organize code

✓

The code contains a wide
variety of functions that help
keep it organized

Code uses comments to
document functions’
purposes

✗

Comments are included
rather sparingly and are
usually used as notes to self
or others rather than real
documentation

Code includes comments
documenting arguments and
return values of functions

✗

Return values of functions
are usually emphasized by
variable or function names
and are not commented

Variable names are
descriptive and convey their
use in the code

✓

Variables are clearly named
with identifiers that clarify
their purpose in the code

Code avoids usage of
unnamed constants other
than 0, 1, and/or 2

✓

The code contains a
namespace for constants,
which are identified by
descriptive names

Code is formatted to show
flow of control

✓

The code is formatted
clearly and allows a reader
to identify the flow of control

Comments do not contain
blocks of old or unused
code

✓

Old code is instead either
deleted or accessed using
version history on our Github
repository

January 17, 2019

The code is structured in a logical and easily readable manner, as well as being free of
potential bugs that may be difficult to notice, such as memory leaks or typing issues.
Functions and variables follow specific naming conventions which not only help organize
them, but also clarify their purpose. Important values are either defined as preprocessor
macros or passed in as arguments to avoid reliance on ambiguous “magic numbers”.

However, the code does not have comments explaining the use of functions such as
robot::direct() or delta_angle(), which may hinder the reader’s understanding of
what these functions do. The code also does not comment on the return value of some
functions, which may also hinder understanding of the code.

Reliability
The code is highly reliable and safe for operation for a number of reasons. It is

structured in a way that clearly emphasizes the flow control and makes the robot’s process of
operation very easy to understand. The robot combines a coordinate-and-bearing-based
positional system in combination with the compass sensor to determine its position and
orientation at all times.

The code allows the robot to detect errors in its position using the compass while it is
driving in a straight line, combining it with a mathematically optimized curve function to make
the robot smoothly set itself back on course if it is skewed or tilted off the correct angle.
Additionally, the code facilitates significant amounts of error checking through use of
compile-time error checking using templates and static_assert. This ensures that errors
can be caught during compilation, without a need to even test the robot on the board. The
code also uses multithreading for certain processes, and as a part of this we ensured that
there are no deadlocks in the code that could cause conflict over memory addresses. Finally,
the clear and well-organized object structure of the code and its inheritance patterns makes
the code more reliable to use by including generalized functions usable with either robot
while differentiating their functionality slightly to suit each robot using virtual functions.
This reduces confusion over parameters or purpose when using different robots.

However, the code is not perfectly reliable and can be improved. The use of the tape
or ultrasonic sensors could be added in to reinforce the robot’s positional system, as well as
using the accelerometer in combination with double numerical integration to determine the
robot’s forward movement more accurately.

Maintainability
As mentioned earlier, the code uses an object-oriented structure and places the

Wallaby functions such as mav() beneath a layer of abstraction that makes them more
user-friendly and efficient to use. Both the Demobot and Create classes inherit from a base
Robot class that includes the base layer for actions such as movement and orientation.
Individual Servo objects are then added as components to a respective robot and accessed
using the dot “.” operator as a class member. This structure makes it incredibly easy to
determine which function belongs to which class and what its purpose is, allowing any
relevant additions or modifications to be made to the correct function.

Important or relevant constants, such as the robot’s default speed, are placed into
their own namespace called def, preventing the use of magic numbers that obfuscate code
and make it difficult to maintain. Functions and variables are named rather clearly as to

January 17, 2019

indicate their purpose, which helps easily identify the flow of the code and where
modifications ought to be made. One of the most important aspects of our code’s
maintainability is the fact that we have set up a private Github repository that allows us to
keep our local versions constantly up to date without having to rely on USBs or store them on
the Wallabies, as well as providing us with a backup of the code should we have any issues
with a Wallaby. This also helps us keep track of what changes have been made to the code
through commit messages, allowing all programmers to know how the code’s latest version
works. Comments are also left on the code on buggy or untested portions of the code to let
other programmers know what requires fixing or what a source of error may be.

The one way to improve our code’s maintainability is to improve its documentation
and commenting. At the moment, there are some functions that use code that can be
complex, or are included in one file and used in another with little explanation. Including
comments to explain a function’s purpose and behavior would make it far easier to maintain
and use the code in the future.

January 17, 2019

Effectiveness
The code is highly effective at performing its task. The coordinate system mentioned

earlier allows it to keep track of its location and face or go to a certain point on demand,
helping us trace a path using very simple and easy instructions. Additionally, the robot uses
multithreading to allow it to perform multiple functions at once, such as moving a servo while
operating the drivetrain. This is highly effective since it makes the movement much smoother
and allows the robot to perform tasks very quickly.

The code could be made more effective by including communication between the
robots. This would save a lot of time on the board by allowing one robot to detect randomized
objectives using the camera, for example, while the other robot performs them immediately
without having to have one robot perform both the checking and the objective itself.

Code Excerpt — Before

This is our initial setup of some of the code
we were using, which we decided to build
upon and improve. The code did not perform
any compile time checking, and relied solely
on coordinates in order to orient itself and
move around the board, with essentially no
sensory input involved.

It relied almost entirely on the _position
member in order to give information about its
location, while _theta was updated using
estimations by trigonometric formulae rather
than real sensory data. The code also
included significant amounts of magic
numbers and some convoluted variable and
function names that were difficult to read.

This was of course improved by including
more compile-time checking using templates,
as well as incorporating the compass sensor
in order to improve the accuracy of the
robots. It has also been organized by adding
more descriptive variable and function names
and eliminating any inclusion of magic
numbers in favor of static constexpr
constants that are clearly named and defined.

January 17, 2019

Code Excerpt — After

The code above makes use of static_assert, compile-time checking using
templates, displays the compass calibration function, and uses clear variable, function, and
parameter names. It also includes no magic numbers (an identifier from namespace def is
actually used above) and uses the compass to ensure accuracy of turning.

