
KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

Model daily processes by creating and following 
algorithms (sets of step-by-step instructions) to 
complete tasks.
Composition is the combination of smaller tasks into more complex 
tasks. Students could create and follow algorithms for making 
simple foods, brushing their teeth, getting ready for school, 
participating in cleanup time.
Practice(s): Developing and Using Abstractions: 4.4

Model the way programs store and manipulate 
data by using numbers or other symbols to 
represent information.
Information in the real world can be represented in computer 
programs. Students could use thumbs up/down as representations 
of yes/no, use arrows when writing algorithms to represent 
direction, or encode and decode words using numbers, 
pictographs, or other symbols to represent letters or words.
Practice(s): Developing and Using Abstractions: 4.4

Develop programs with sequences and simple 
loops, to express ideas or address a problem.
Programming is used as a tool to create products that reflect a 
wide range of interests. Control structures specify the order in 
which instructions are executed within a program. Sequences are 
the order of instructions in a program. For example, if dialogue is 
not sequenced correctly when programming a simple animated 
story, the story will not make sense. If the commands to program a 
robot are not in the correct order, the robot will not complete the 
task desired. Loops allow for the repetition of a sequence of code 
multiple times. For example, in a program to show the life cycle of a 
butterfly, a loop could be combined with move commands to allow 
Practice(s): Creating Computational Artifacts: 5.2

Decompose (break down) the steps needed to 
solve a problem into a precise sequence of 
instructions.

1A-AP-10 K-2
Algorithms & 
Programming Creating

1A-AP-11 K-2
Algorithms & 
Programming

Computational 
Problems

CSTA Standards

Module 2- Creating Algorithms 
(Unplugged) 
Module 3- Unplugged programming

Module 2- Creating Algorithms 
(Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Module 2- Creating Algorithms 
(Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

1A-AP-08 K-2
Algorithms & 
Programming Abstraction

1A-AP-09 K-2
Algorithms & 
Programming Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Decomposition is the act of breaking down tasks into simpler tasks. 
Students could break down the steps needed to make a peanut 
butter and jelly sandwich, to brush their teeth, to draw a shape, to 
move a character across the screen, or to solve a level of a coding 
app.
Practice(s): Recognizing and Defining Computational Problems: 
3.2

Develop plans that describe a program’s 
sequence of events, goals, and expected 
outcomes.
Creating a plan for what a program will do clarifies the steps that 
will be needed to create a program and can be used to check if a 
program is correct. Students could create a planning document, 
such as a story map, a storyboard, or a sequential graphic 
organizer, to illustrate what their program will do. Students at this 
stage may complete the planning process with help from their 
teachers.
Practice(s): Creating Computational Artifacts, Communicating 
About Computing: 5.1, 7.2

Give attribution when using the ideas and 
creations of others while developing programs.
Using computers comes with a level of responsibility. Students 
should credit artifacts that were created by others, such as 
pictures, music, and code. Credit could be given orally, if 
presenting their work to the class, or in writing or orally, if sharing 
work on a class blog or website. Proper attribution at this stage 
does not require a formal citation, such as in a bibliography or 
works cited document.
Practice(s): Communicating About Computing: 7.3

Debug (identify and fix) errors in an algorithm or 
program that includes sequences and simple 
loops.

1A-AP-11 K-2
Algorithms & 
Programming

Computational 
Problems

Communicating

Module 2- Creating Algorithms 
(Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Module 2- Creating Algorithms 
(Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Module 5- Navigating the Digital World
Teamwork and Project Management 
Strategies

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

1A-AP-14 K-2
Algorithms & 
Programming Testing

1A-AP-12 K-2
Algorithms & 
Programming

Creating, 
Communicating

1A-AP-13 K-2
Algorithms & 
Programming



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Algorithms or programs may not always work correctly. Students 
should be able to use various strategies, such as changing the 
sequence of the steps, following the algorithm in a step-by-step 
manner, or trial and error to fix problems in algorithms and 
programs.
Practice(s): Testing and Refining Computational Artifacts: 6.2

Using correct terminology, describe steps taken 
and choices made during the iterative process of 
program development.
At this stage, students should be able to talk or write about the 
goals and expected outcomes of the programs they create and the 
choices that they made when creating programs. This could be 
done using coding journals, discussions with a teacher, class 
presentations, or blogs.
Practice(s): Communicating About Computing: 7.2

Select and operate appropriate software to 
perform a variety of tasks, and recognize that 
users have different needs and preferences for the 
technology they use.
People use computing devices to perform a variety of tasks 
accurately and quickly. Students should be able to select the 
appropriate app/program to use for tasks they are required to 
complete. For example, if students are asked to draw a picture, 
they should be able to open and use a drawing app/program to 
complete this task, or if they are asked to create a presentation, 
they should be able to open and use presentation software. In 
addition, with teacher guidance, students should compare and 
discuss preferences for software with the same primary 
functionality. Students could compare different web browsers or 
word processing, presentation, or drawing programs.
Practice(s): Fostering an Inclusive Computing Culture: 1.1

Use appropriate terminology in identifying and 
describing the function of common physical 
components of computing systems (hardware).

Module 5- Navigating the Digital World

Module 4- Computer Communication
Module 6- Introduction to Robots

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

1A-CS-01 K-2
Computing 
Systems Inclusion

1A-CS-02 K-2
Computing 
Systems Communicating

1A-AP-14 K-2
Algorithms & 
Programming Testing

1A-AP-15 K-2
Algorithms & 
Programming Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

A computing system is composed of hardware and software. 
Hardware consists of physical components.Students should be 
able to identify and describe the function of external hardware, 
such as desktop computers, laptop computers, tablet devices, 
monitors, keyboards, mice, and printers.
Practice(s): Communicating About Computing: 7.2

Describe basic hardware and software problems 
using accurate terminology.
Problems with computing systems have different causes. Students 
at this level do not need to understand those causes, but they 
should be able to communicate a problem with accurate 
terminology (e.g., when an app or program is not working as 
expected, a device will not turn on, the sound does not work, etc.). 
Ideally, students would be able to use simple troubleshooting 
strategies, including turning a device off and on to reboot it, closing 
and reopening an app, turning on speakers, or plugging in 
headphones. These are, however, not specified in the standard, 
because these problems may not occur.
Practice(s): Testing and Refining Computational Artifacts, 

Store, copy, search, retrieve, modify, and delete 
information using a computing device and define 
the information stored as data.
All information stored and processed by a computing device is 
referred to as data. Data can be images, text documents, audio 
files, software programs or apps, video files, etc. As students use 
software to complete tasks on a computing device, they will be 
manipulating data.
Practice(s): Developing and Using Abstractions: 4.2

Collect and present the same data in various 
visual formats.

Module 4- Computer Communication
Module 6- Introduction to Robots

Module 6- Introduction to Robots
Module 7- Introduction to Programming 
Languages
Module 8- Writing Your First Program

Module 8- Writing Your First Program

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

1A-CS-02 K-2
Computing 
Systems Communicating

1A-DA-06 K-2
Data & 
Analysis

Communicating, 
Abstraction

1A-CS-03 K-2
Computing 
Systems

Testing, 
Communicating

1A-DA-05 K-2
Data & 
Analysis Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

The collection and use of data about the world around them is a 
routine part of life and influences how people live. Students could 
collect data on the weather, such as sunny days versus rainy days, 
the temperature at the beginning of the school day and end of the 
school day, or the inches of rain over the course of a storm. 
Students could count the number of pieces of each color of candy 
in a bag of candy, such as Skittles or M&Ms. Students could create 
surveys of things that interest them, such as favorite foods, pets, or 
TV shows, and collect answers to their surveys from their peers and 
others. The data collected could then be organized into two or 
more visualizations, such as a bar graph, pie chart, or pictograph.
Practice(s): Communicating About Computing, Developing and 
Using Abstractions: 7.1, 4.4

Identify and describe patterns in data 
visualizations, such as charts or graphs, to make 
predictions.
Data can be used to make inferences or predictions about the 
world. Students could analyze a graph or pie chart of the colors in 
a bag of candy or the averages for colors in multiple bags of 
candy, identify the patterns for which colors are most and least 
represented, and then make a prediction as to which colors will 
have most and least in a new bag of candy. Students could 
analyze graphs of temperatures taken at the beginning of the 
school day and end of the school day, identify the patterns of 
when temperatures rise and fall, and predict if they think the 
temperature will rise or fall at a particular time of the day, based on 
the pattern observed.
Practice(s): Developing and Using Abstractions: 4.1

Compare how people live and work before and 
after the implementation or adoption of new 
computing technology.

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Module 5- Navigating the Digital World

1A-DA-06 K-2
Data & 
Analysis

Communicating, 
Abstraction

1A-DA-07 K-2
Data & 
Analysis Abstraction

1A-IC-16 K-2
Impacts of 
Computing Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Computing technology has positively and negatively changed the 
way people live and work. In the past, if students wanted to read 
about a topic, they needed access to a library to find a book about 
it. Today, students can view and read information on the Internet 
about a topic or they can download e-books about it directly to a 
device. Such information may be available in more than one 
language and could be read to a student, allowing for great 
accessibility.
Practice(s): Communicating About Computing: 7

Work respectfully and responsibly with others 
online.
Online communication facilitates positive interactions, such as 
sharing ideas with many people, but the public and anonymous 
nature of online communication also allows intimidating and 
inappropriate behavior in the form of cyber bullying. Students could 
share their work on blogs or in other collaborative spaces online, 
taking care to avoid sharing information that is inappropriate or that 
could personally identify them to others. Students could provide 
feedback to others on their work in a kind and respectful manner 
and could tell an adult if others are sharing things they should not 
share or are treating others in an unkind or disrespectful manner 
on online collaborative spaces.
Practice(s): Collaborating Around Computing: 2.1

Keep login information private, and log off of 
devices appropriately.
People use computing technology in ways that can help or hurt 
themselves or others. Harmful behaviors, such as sharing private 
information and leaving public devices logged in should be 
recognized and avoided.
Practice(s): Communicating About Computing: 7.3

Explain what passwords are and why we use 
them, and use strong passwords to protect 
devices and information from unauthorized 
access.

Module 5- Navigating the Digital World

Module 5- Navigating the Digital World

Module 5- Navigating the Digital World
Teamwork and Project Management 
Strategies

Module 5- Navigating the Digital World
Module 8- Writing Your First Program

1A-IC-18 K-2
Impacts of 
Computing Communicating

1A-NI-04 K-2
Networks & 
the Internet Communicating

1A-IC-16 K-2
Impacts of 
Computing Communicating

1A-IC-17 K-2
Impacts of 
Computing Collaborating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Learning to protect one's device or information from unwanted use 
by others is an essential first step in learning about cybersecurity. 
Students are not required to use multiple strong passwords. They 
should appropriately use and protect the passwords they are 
required to use.
Practice(s): Communicating About Computing: 7.3

Compare and refine multiple algorithms for the 
same task and determine which is the most 
appropriate.
Different algorithms can achieve the same result, though 
sometimes one algorithm might be most appropriate for a specific 
situation. Students should be able to look at different ways to solve 
the same task and decide which would be the best solution. For 
example, students could use a map and plan multiple algorithms to 
get from one point to another. They could look at routes suggested 
by mapping software and change the route to something that 
would be better, based on which route is shortest or fastest or 
would avoid a problem. Students might compare algorithms that 
describe how to get ready for school. Another example might be to 
write different algorithms to draw a regular polygon and determine 
which algorithm would be the easiest to modify or repurpose to 
draw a different polygon.
Practice(s): Testing and Refining Computational Artifacts, 
Recognizing and Defining Computational Problems: 6.3, 3.3

Create programs that use variables to store and 
modify data.
Variables are used to store and modify data. At this level, 
understanding how to use variables is sufficient. For example, 
students may use mathematical operations to add to the score of a 
game or subtract from the number of lives available in a game. The 
use of a variable as a countdown timer is another example.

Practice(s): Creating Computational Artifacts: 5.2

Create programs that include sequences, events, 
loops, and conditionals.

Module 5- Navigating the Digital World

Module 2- Creating Algorithms 
(Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

1A-NI-04 K-2
Networks & 
the Internet Communicating

1B-AP-10 3-5
Algorithms & 
Programming Creating

1B-AP-08 3-5
Algorithms & 
Programming

Testing, 
Computational 
Problems

1B-AP-09 3-5
Algorithms & 
Programming Creating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Control structures specify the order (sequence) in which instructions 
are executed within a program and can be combined to support 
the creation of more complex programs. Events allow portions of a 
program to run based on a specific action. For example, students 
could write a program to explain the water cycle and when a 
specific component is clicked (event), the program would show 
information about that part of the water cycle. Conditionals allow for 
the execution of a portion of code in a program when a certain 
condition is true. For example, students could write a math game 
that asks multiplication fact questions and then uses a conditional 
to check whether or not the answer that was entered is correct. 
Loops allow for the repetition of a sequence of code multiple times. 
For example, in a program that produces an animation about a 
famous historical character, students could use a loop to have the 
character walk across the screen as they introduce themselves.
Practice(s): Creating Computational Artifacts: 5.2

Decompose (break down) problems into smaller, 
manageable subproblems to facilitate the 
program development process.
Decomposition is the act of breaking down tasks into simpler tasks. 
For example, students could create an animation by separating a 
story into different scenes. For each scene, they would select a 
background, place characters, and program actions.

Practice(s): Recognizing and Defining Computational Problems: 
3.2

Modify, remix, or incorporate portions of an 
existing program into one's own work, to develop 
something new or add more advanced features.

Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 2- Creating Algorithms 
(Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 2- Creating Algorithms 
(Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

1B-AP-10 3-5
Algorithms & 
Programming Creating

1B-AP-11 3-5
Algorithms & 
Programming

Computational 
Problems

1B-AP-12 3-5
Algorithms & 
Programming Creating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Programs can be broken down into smaller parts, which can be 
incorporated into new or existing programs. For example, students 
could modify prewritten code from a single-player game to create a 
two-player game with slightly different rules, remix and add another 
scene to an animated story, use code to make a ball bounce from 
another program in a new basketball game, or modify an image 
created by another student.

Practice(s): Creating Computational Artifacts: 5.3

Use an iterative process to plan the development 
of a program by including others' perspectives 
and considering user preferences.
Planning is an important part of the iterative process of program 
development. Students outline key features, time and resource 
constraints, and user expectations. Students should document the 
plan as, for example, a storyboard, flowchart, pseudocode, or story 
map.

Practice(s): Fostering an Inclusive Computing Culture, Creating 
Computational Artifacts: 1.1, 5.1

Observe intellectual property rights and give 
appropriate attribution when creating or remixing 
programs.

Intellectual property rights can vary by country but copyright laws 
give the creator of a work a set of rights that prevents others from 
copying the work and using it in ways that they may not like. 
Students should identify instances of remixing, when ideas are 
borrowed and iterated upon, and credit the original creator. 
Students should also consider common licenses that place 
limitations or restrictions on the use of computational artifacts, such 
as images and music downloaded from the Internet. At this stage, 
attribution should be written in the format required by the teacher 
and should always be included on any programs shared online.

Module 2- Creating Algorithms 
(Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 2- Creating Algorithms 
(Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 5- Navigating the Digital World
Module 8- Writing Your First Program
Teamwork and Project Management 
Strategies

1B-AP-14 3-5
Algorithms & 
Programming

Creating, 
Communicating

1B-AP-12 3-5
Algorithms & 
Programming Creating

1B-AP-13 3-5
Algorithms & 
Programming

Inclusion, 
Creating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Creating Computational Artifacts, Communicating 
About Computing: 5.2, 7.3

Test and debug (identify and fix errors) a program 
or algorithm to ensure it runs as intended.
As students develop programs they should continuously test those 
programs to see that they do what was expected and fix (debug), 
any errors. Students should also be able to successfully debug 
simple errors in programs created by others.

Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2

Take on varying roles, with teacher guidance, 
when collaborating with peers during the design, 
implementation, and review stages of program 
development.
Collaborative computing is the process of performing a 
computational task by working in pairs or on teams. Because it 
involves asking for the contributions and feedback of others, 
effective collaboration can lead to better outcomes than working 
independently. Students should take turns in different roles during 
program development, such as note taker, facilitator, program 
tester, or “driver” of the computer.
Practice(s): Collaborating Around Computing: 2.2

Describe choices made during program 
development using code comments, 
presentations, and demonstrations.
People communicate about their code to help others understand 
and use their programs. Another purpose of communicating one's 
design choices is to show an understanding of one's work. These 
explanations could manifest themselves as in-line code comments 
for collaborators and assessors, or as part of a summative 
presentation, such as a code walk-through or coding journal.

Teamwork and Project Management 
Strategies
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 5- Navigating the Digital World
Module 8- Writing Your First Program
Teamwork and Project Management 
Strategies

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

1B-AP-14 3-5
Algorithms & 
Programming

Creating, 
Communicating

1B-AP-15 3-5
Algorithms & 
Programming Testing

1B-AP-16 3-5
Algorithms & 
Programming Collaborating

1B-AP-17 3-5
Algorithms & 
Programming Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Communicating About Computing: 7.2

Describe how internal and external parts of 
computing devices function to form a system.
Computing devices often depend on other devices or components. 
For example, a robot depends on a physically attached light sensor 
to detect changes in brightness, whereas the light sensor depends 
on the robot for power. Keyboard input or a mouse click could 
cause an action to happen or information to be displayed on a 
screen; this could only happen because the computer has a 
processor to evaluate what is happening externally and produce 
corresponding responses. Students should describe how devices 
and components interact using correct terminology.
Practice(s): Communicating About Computing: 7.2

Model how computer hardware and software work 
together as a system to accomplish tasks.
In order for a person to accomplish tasks with a computer, both 
hardware and software are needed. At this stage, a model should 
only include the basic elements of a computer system, such as 
input, output, processor, sensors, and storage. Students could 
draw a model on paper or in a drawing program, program an 
animation to demonstrate it, or demonstrate it by acting this out in 
some way.
Practice(s): Developing and Using Abstractions: 4.4

Determine potential solutions to solve simple 
hardware and software problems using common 
troubleshooting strategies.

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 14- Digital Sensors
Module 15- Analog Sensors

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 14- Digital Sensors
Module 15- Analog Sensors

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

1B-CS-01 3-5
Computing 
Systems Communicating

1B-CS-02 3-5
Computing 
Systems Abstraction

1B-AP-17 3-5
Algorithms & 
Programming Communicating

1B-CS-03 3-5
Computing 
Systems Testing



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Although computing systems may vary, common troubleshooting 
strategies can be used on all of them. Students should be able to 
identify solutions to problems such as the device not responding, 
no power, no network, app crashing, no sound, or password entry 
not working. Should errors occur at school, the goal would be that 
students would use various strategies, such as rebooting the 
device, checking for power, checking network availability, closing 
and reopening an app, making sure speakers are turned on or 
headphones are plugged in, and making sure that the caps lock 
key is not on, to solve these problems, when possible.
Practice(s): Testing and Refining Computational Artifacts: 6.2

Organize and present collected data visually to 
highlight relationships and support a claim.

Raw data has little meaning on its own. Data is often sorted or 
grouped to provide additional clarity. Organizing data can make 
interpreting and communicating it to others easier. Data points can 
be clustered by a number of commonalities. The same data could 
be manipulated in different ways to emphasize particular aspects or 
parts of the data set. For example, a data set of sports teams 
could be sorted by wins, points scored, or points allowed, and a 
data set of weather information could be sorted by high 
temperatures, low temperatures, or precipitation.
Practice(s): Communicating About Computing: 7.1Use data to highlight or propose cause-and-effect 
relationships, predict outcomes, or communicate 
an idea.

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

1B-DA-07 3-5
Data & 
Analysis Communicating

1B-CS-03 3-5
Computing 
Systems Testing

1B-DA-06 3-5
Data & 
Analysis Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

The accuracy of data analysis is related to how realistically data is 
represented. Inferences or predictions based on data are less likely 
to be accurate if the data is not sufficient or if the data is incorrect 
in some way. Students should be able to refer to data when 
communicating an idea. For example, in order to explore the 
relationship between speed, time, and distance, students could 
operate a robot at uniform speed, and at increasing time intervals 
to predict how far the robot travels at that speed. In order to make 
an accurate prediction, one or two attempts of differing times would 
not be enough. The robot may also collect temperature data from a 
sensor, but that data would not be relevant for the task. Students 
must also make accurate measurements of the distance the robot 
travels in order to develop a valid prediction. Students could record 
the temperature at noon each day as a basis to show that 
temperatures are higher in certain months of the year. If 
temperatures are not recorded on non-school days or are recorded 
incorrectly or at different times of the day, the data would be 
incomplete and the ideas being communicated could be 
inaccurate. Students may also record the day of the week on which 
the data was collected, but this would have no relevance to 
whether temperatures are higher or lower. In order to have 
sufficient and accurate data on which to communicate the idea, 
students might want to use data provided by a governmental 
weather agency.
Practice(s): Communicating About Computing: 7.1

Discuss computing technologies that have 
changed the world, and express how those 
technologies influence, and are influenced by, 
cultural practices.

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Module 5- Navigating the Digital World
1B-DA-07 3-5

Data & 
Analysis Communicating

1B-IC-18 3-5
Impacts of 
Computing

Computational 
Problems



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

New computing technology is created and existing technologies 
are modified for many reasons, including to increase their benefits, 
decrease their risks, and meet societal needs. Students, with 
guidance from their teacher, should discuss topics that relate to the 
history of technology and the changes in the world due to 
technology. Topics could be based on current news content, such 
as robotics, wireless Internet, mobile computing devices, GPS 
systems, wearable computing, or how social media has influenced 
social and political changes.
Practice(s): Recognizing and Defining Computational Problems: 
3.1

Brainstorm ways to improve the accessibility and 
usability of technology products for the diverse 
needs and wants of users.
The development and modification of computing technology are 
driven by people’s needs and wants and can affect groups 
differently. Anticipating the needs and wants of diverse end users 
requires students to purposefully consider potential perspectives of 
users with different backgrounds, ability levels, points of view, and 
disabilities. For example, students may consider using both speech 
and text when they wish to convey information in a game. They 
may also wish to vary the types of programs they create, knowing 
that not everyone shares their own tastes.
Practice(s): Fostering an Inclusive Computing Culture: 1.2

Seek diverse perspectives for the purpose of 
improving computational artifacts.
Computing provides the possibility for collaboration and sharing of 
ideas and allows the benefit of diverse perspectives. For example, 
students could seek feedback from other groups in their class or 
students at another grade level. Or, with guidance from their 
teacher, they could use video conferencing tools or other online 
collaborative spaces, such as blogs, wikis, forums, or website 
comments, to gather feedback from individuals and groups about 
programming projects.

Teamwork and Project Management 
Strategies
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void
GitHub

Module 5- Navigating the Digital World

Module 5- Navigating the Digital World
1B-IC-18 3-5

Impacts of 
Computing

Computational 
Problems

1B-IC-19 3-5
Impacts of 
Computing Inclusion

1B-IC-20 3-5
Impacts of 
Computing Inclusion



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Fostering an Inclusive Computing Culture: 1.1

Use public domain or creative commons media, 
and refrain from copying or using material 
created by others without permission.

Ethical complications arise from the opportunities provided by 
computing. The ease of sending and receiving copies of media on 
the Internet, such as video, photos, and music, creates the 
opportunity for unauthorized use, such as online piracy, and 
disregard of copyrights. Students should consider the licenses on 
computational artifacts that they wish to use. For example, the 
license on a downloaded image or audio file may have restrictions 
that prohibit modification, require attribution, or prohibit use entirely.
Practice(s): Communicating About Computing: 7.3

Model how information is broken down into 
smaller pieces, transmitted as packets through 
multiple devices over networks and the Internet, 
and reassembled at the destination.
Information is sent and received over physical or wireless paths. It 
is broken down into smaller pieces called packets, which are sent 
independently and reassembled at the destination. Students 
should demonstrate their understanding of this flow of information 
by, for instance, drawing a model of the way packets are 
transmitted, programming an animation to show how packets are 
transmitted, or demonstrating this through an unplugged activity 
which has them act it out in some way.
Practice(s): Developing and Using Abstractions: 4.4

Discuss real-world cybersecurity problems and 
how personal information can be protected.

Teamwork and Project Management 
Strategies
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void
GitHub

Module 5- Navigating the Digital World

Module 4- Computer Communication

Module 5- Navigating the Digital World

1B-IC-21 3-5
Impacts of 
Computing Communicating

1B-NI-04 3-5
Networks & 
the Internet Abstraction

1B-IC-20 3-5
Impacts of 
Computing Inclusion

1B-NI-05 3-5
Networks & 
the Internet

Computational 
Problems



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Just as we protect our personal property offline, we also need to 
protect our devices and the information stored on them. 
Information can be protected using various security measures. 
These measures can be physical and/or digital. Students could 
discuss or use a journaling or blogging activity to explain, orally or 
in writing, about topics that relate to personal cybersecurity issues. 
Discussion topics could be based on current events related to 
cybersecurity or topics that are applicable to students, such as the 
necessity of backing up data to guard against loss, how to create 
strong passwords and the importance of not sharing passwords, or 
why we should install and keep anti-virus software updated to 
protect data and systems.

Practice(s): Recognizing and Defining Computational Problems: 
3.1

Use flowcharts and/or pseudocode to address 
complex problems as algorithms.
Complex problems are problems that would be difficult for students 
to solve computationally. Students should use pseudocode and/or 
flowcharts to organize and sequence an algorithm that addresses 
a complex problem, even though they may not actually program 
the solutions. For example, students might express an algorithm 
that produces a recommendation for purchasing sneakers based 
on inputs such as size, colors, brand, comfort, and cost. Testing 
the algorithm with a wide range of inputs and users allows students 
to refine their recommendation algorithm and to identify other 
inputs they may have initially excluded.

Practice(s): Developing and Using Abstractions: 4.4, 4.1

Create clearly named variables that represent 
different data types and perform operations on 
their values.

Module 5- Navigating the Digital World

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

2-AP-11 6-8
Algorithms & 
Programming Creating

1B-NI-05 3-5
Networks & 
the Internet

Computational 
Problems

2-AP-10 6-8
Algorithms & 
Programming Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

A variable is like a container with a name, in which the contents 
may change, but the name (identifier) does not. When planning 
and developing programs, students should decide when and how 
to declare and name new variables. Students should use naming 
conventions to improve program readability. Examples of 
operations include adding points to the score, combining user input 
with words to make a sentence, changing the size of a picture, or 
adding a name to a list of people.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

Design and iteratively develop programs that 
combine control structures, including nested 
loops and compound conditionals.
Control structures can be combined in many ways. Nested loops 
are loops placed within loops. Compound conditionals combine two 
or more conditions in a logical relationship (e.g., using AND, OR, 
and NOT), and nesting conditionals within one another allows the 
result of one conditional to lead to another. For example, when 
programming an interactive story, students could use a compound 
conditional within a loop to unlock a door only if a character has a 
key AND is touching the door.

Practice(s): Creating Computational Artifacts: 5.1, 5.2

Decompose problems and subproblems into parts 
to facilitate the design, implementation, and 
review of programs.
Students should break down problems into subproblems, which 
can be further broken down to smaller parts. Decomposition 
facilitates aspects of program development by allowing students to 
focus on one piece at a time (e.g., getting input from the user, 
processing the data, and displaying the result to the user). 
Decomposition also enables different students to work on different 
parts at the same time. For example, animations can be 
decomposed into multiple scenes, which can be developed 
independently.

Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void
Using the Camera
Advanced Camera Code

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

2-AP-11 6-8
Algorithms & 
Programming Creating

2-AP-12 6-8
Algorithms & 
Programming Creating

2-AP-13 6-8
Algorithms & 
Programming

Computational 
Problems



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Recognizing and Defining Computational Problems: 
3.2

Create procedures with parameters to organize 
code and make it easier to reuse.
Students should create procedures and/or functions that are used 
multiple times within a program to repeat groups of instructions. 
These procedures can be generalized by defining parameters that 
create different outputs for a wide range of inputs. For example, a 
procedure to draw a circle involves many instructions, but all of 
them can be invoked with one instruction, such as “drawCircle.” By 
adding a radius parameter, the user can easily draw circles of 
different sizes.
Practice(s): Developing and Using Abstractions: 4.1, 4.3

Seek and incorporate feedback from team 
members and users to refine a solution that meets 
user needs.
Development teams that employ user-centered design create 
solutions (e.g., programs and devices) that can have a large 
societal impact, such as an app that allows people with speech 
difficulties to translate hard-to-understand pronunciation into 
understandable language. Students should begin to seek diverse 
perspectives throughout the design process to improve their 
computational artifacts. Considerations of the end-user may include 
usability, accessibility, age-appropriate content, respectful 
language, user perspective, pronoun use, color contrast, and ease 
of use.

Practice(s): Collaborating Around Computing, Fostering an 
Inclusive Computing Culture: 2.3, 1.1

Incorporate existing code, media, and libraries 
into original programs, and give attribution.

Teamwork and Project Management 
Strategies
Module 5- Navigating the Digital World
GitHub

Module 5- Navigating the Digital World
Writing Functions
What is a Library?

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Writing Functions
What is a Library?

2-AP-15 6-8
Algorithms & 
Programming

Collaborating, 
Inclusion

2-AP-16 6-8
Algorithms & 
Programming

Abstraction, 
Creating, 
Communicating

2-AP-13 6-8
Algorithms & 
Programming

Computational 
Problems

2-AP-14 6-8
Algorithms & 
Programming Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Building on the work of others enables students to produce more 
interesting and powerful creations. Students should use portions of 
code, algorithms, and/or digital media in their own programs and 
websites. At this level, they may also import libraries and connect to 
web application program interfaces (APIs). For example, when 
creating a side-scrolling game, students may incorporate portions 
of code that create a realistic jump movement from another 
person's game, and they may also import Creative Commons-
licensed images to use in the background. Students should give 
attribution to the original creators to acknowledge their 
contributions.

Practice(s): Developing and Using Abstractions, Creating 
Computational Artifacts, Communicating About Computing: 4.2, 
5.2, 7.3

Systematically test and refine programs using a 
range of test cases.
Use cases and test cases are created and analyzed to better meet 
the needs of users and to evaluate whether programs function as 
intended. At this level, testing should become a deliberate process 
that is more iterative, systematic, and proactive than at lower levels. 
Students should begin to test programs by considering potential 
errors, such as what will happen if a user enters invalid input (e.g., 
negative numbers and 0 instead of positive numbers).

Practice(s): Testing and Refining Computational Artifacts: 6.1

Distribute tasks and maintain a project timeline 
when collaboratively developing computational 
artifacts.

Module 5- Navigating the Digital World
Writing Functions
What is a Library?

Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Teamwork and Project Management 
Strategies
Module 5- Navigating a Digital World
Github

2-AP-16 6-8
Algorithms & 
Programming

Abstraction, 
Creating, 
Communicating

2-AP-17 6-8
Algorithms & 
Programming Testing

2-AP-18 6-8
Algorithms & 
Programming Collaborating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Collaboration is a common and crucial practice in programming 
development. Often, many individuals and groups work on the 
interdependent parts of a project together. Students should 
assume pre-defined roles within their teams and manage the 
project workflow using structured timelines. With teacher guidance, 
they will begin to create collective goals, expectations, and 
equitable workloads. For example, students may divide the design 
stage of a game into planning the storyboard, flowchart, and 
different parts of the game mechanics. They can then distribute 
tasks and roles among members of the team and assign deadlines.
Practice(s): Collaborating Around Computing: 2.2

Document programs in order to make them easier 
to follow, test, and debug.
Documentation allows creators and others to more easily use and 
understand a program. Students should provide documentation for 
end users that explains their artifacts and how they function. For 
example, students could provide a project overview and clear user 
instructions. They should also incorporate comments in their 
product and communicate their process using design documents, 
flowcharts, and presentations.

Practice(s): Communicating About Computing: 7.2

Recommend improvements to the design of 
computing devices, based on an analysis of how 
users interact with the devices.
The study of human–computer interaction (HCI) can improve the 
design of devices, including both hardware and software. Students 
should make recommendations for existing devices (e.g., a laptop, 
phone, or tablet) or design their own components or interface (e.g., 
create their own controllers). Teachers can guide students to 
consider usability through several lenses, including accessibility, 
ergonomics, and learnability. For example, assistive devices 
provide capabilities such as scanning written information and 
converting it to speech.

Teamwork and Project Management 
Strategies
Module 5- Navigating a Digital World
Github

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Module 5- Navigating the Digital World
2-AP-19 6-8

Algorithms & 
Programming Communicating

2-CS-01 6-8
Computing 
Systems

Computational 
Problems

2-AP-18 6-8
Algorithms & 
Programming Collaborating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Recognizing and Defining Computational Problems: 
3.3

Design projects that combine hardware and 
software components to collect and exchange 
data.
Collecting and exchanging data involves input, output, storage, 
and processing. When possible, students should select the 
hardware and software components for their project designs by 
considering factors such as functionality, cost, size, speed, 
accessibility, and aesthetics. For example, components for a mobile 
app could include accelerometer, GPS, and speech recognition. 
The choice of a device that connects wirelessly through a 
Bluetooth connection versus a physical USB connection involves a 
tradeoff between mobility and the need for an additional power 
source for the wireless device.
Practice(s): Creating Computational Artifacts: 5.1

Systematically identify and fix problems with 
computing devices and their components.
Since a computing device may interact with interconnected devices 
within a system, problems may not be due to the specific 
computing device itself but to devices connected to it. Just as pilots 
use checklists to troubleshoot problems with aircraft systems, 
students should use a similar, structured process to troubleshoot 
problems with computing systems and ensure that potential 
solutions are not overlooked. Examples of troubleshooting 
strategies include following a troubleshooting flow diagram, making 
changes to software to see if hardware will work, checking 
connections and settings, and swapping in working components.
Practice(s): Testing and Refining Computational Artifacts: 6.2

Represent data using multiple encoding schemes.

Module 5- Navigating the Digital World

Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Activity M95
Using the Camera
Advanced Camera Code

2-CS-01 6-8
Computing 
Systems

Computational 
Problems

Data & 
Analysis Abstraction

2-CS-02 6-8
Computing 
Systems Creating

2-CS-03 6-8
Computing 
Systems Testing



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Data representations occur at multiple levels of abstraction, from 
the physical storage of bits to the arrangement of information into 
organized formats (e.g., tables). Students should represent the 
same data in multiple ways. For example, students could represent 
the same color using binary, RGB values, hex codes (low-level 
representations), as well as forms understandable by people, 
including words, symbols, and digital displays of the color (high-
level representations).
Practice(s): Developing and Using Abstractions: 4

Collect data using computational tools and 
transform the data to make it more useful and 
reliable.
As students continue to build on their ability to organize and 
present data visually to support a claim, they will need to 
understand when and how to transform data for this purpose. 
Students should transform data to remove errors, highlight or 
expose relationships, and/or make it easier for computers to 
process. The cleaning of data is an important transformation for 
ensuring consistent format and reducing noise and errors (e.g., 
removing irrelevant responses in a survey). An example of a 
transformation that highlights a relationship is representing males 
and females as percentages of a whole instead of as individual 
counts.
Practice(s): Testing and Refining Computational Artifacts: 6.3

Refine computational models based on the data 
they have generated.

Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Using the Camera
Advanced Camera Code

Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Activity M95
Using the Camera
Advanced Camera Code

2-DA-07 6-8
Data & 
Analysis Abstraction

2-DA-08 6-8
Data & 
Analysis Testing

2-DA-09 6-8
Data & 
Analysis

Creating, 
Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

A model may be a programmed simulation of events or a 
representation of how various data is related. In order to refine a 
model, students need to consider which data points are relevant, 
how data points relate to each other, and if the data is accurate. 
For example, students may make a prediction about how far a ball 
will travel based on a table of data related to the height and angle 
of a track. The students could then test and refine their model by 
comparing predicted versus actual results and considering whether 
other factors are relevant (e.g., size and mass of the ball). 
Additionally, students could refine game mechanics based on test 
outcomes in order to make the game more balanced or fair.
Practice(s): Creating Computational Artifacts, Developing and 
Using Abstractions: 5.3, 4.4

Compare tradeoffs associated with computing 
technologies that affect people's everyday 
activities and career options.
Advancements in computer technology are neither wholly positive 
nor negative. However, the ways that people use computing 
technologies have tradeoffs. Students should consider current 
events related to broad ideas, including privacy, communication, 
and automation. For example, driverless cars can increase 
convenience and reduce accidents, but they are also susceptible 
to hacking. The emerging industry will reduce the number of taxi 
and shared-ride drivers, but will create more software engineering 
and cybersecurity jobs.
Practice(s): Communicating About Computing: 7.2

Discuss issues of bias and accessibility in the 
design of existing technologies.

Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Module 5- Navigating the Digital World

Module 5- Navigating the Digital World

2-IC-21 6-8
Impacts of 
Computing Inclusion

2-DA-09 6-8
Data & 
Analysis

Creating, 
Abstraction

2-IC-20 6-8
Impacts of 
Computing Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Students should test and discuss the usability of various 
technology tools (e.g., apps, games, and devices) with the 
teacher's guidance. For example, facial recognition software that 
works better for lighter skin tones was likely developed with a 
homogeneous testing group and could be improved by sampling a 
more diverse population. When discussing accessibility, students 
may notice that allowing a user to change font sizes and colors will 
not only make an interface usable for people with low vision but 
also benefits users in various situations, such as in bright daylight 
or a dark room.
Practice(s): Fostering an Inclusive Computing Culture: 1.2

Collaborate with many contributors through 
strategies such as crowdsourcing or surveys 
when creating a computational artifact.
Crowdsourcing is gathering services, ideas, or content from a large 
group of people, especially from the online community. It can be 
done at the local level (e.g., classroom or school) or global level 
(e.g., age-appropriate online communities, like Scratch and 
Minecraft). For example, a group of students could combine 
animations to create a digital community mosaic. They could also 
solicit feedback from many people though use of online 
communities and electronic surveys.
Practice(s): Collaborating Around Computing, Creating 
Computational Artifacts: 2.4, 5.2

Describe tradeoffs between allowing information 
to be public and keeping information private and 
secure.
Sharing information online can help establish, maintain, and 
strengthen connections between people. For example, it allows 
artists and designers to display their talents and reach a broad 
audience. However, security attacks often start with personal 
information that is publicly available online. Social engineering is 
based on tricking people into revealing sensitive information and 
can be thwarted by being wary of attacks, such as phishing and 
spoofing.

Module 5- Navigating the Digital World

Teamwork and Project Management 
Strategies
Github

Github
Module 5- Navigating the Digital World

2-IC-21 6-8
Impacts of 
Computing Inclusion

2-IC-22 6-8
Impacts of 
Computing

Collaborating, 
Creating

2-IC-23 6-8
Impacts of 
Computing Communicating



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Practice(s): Communicating About Computing: 7.2
Model the role of protocols in transmitting data 
across networks and the Internet.
Protocols are rules that define how messages between computers 
are sent. They determine how quickly and securely information is 
transmitted across networks and the Internet, as well as how to 
handle errors in transmission. Students should model how data is 
sent using protocols to choose the fastest path, to deal with 
missing information, and to deliver sensitive data securely. For 
example, students could devise a plan for resending lost 
information or for interpreting a picture that has missing pieces. The 
priority at this grade level is understanding the purpose of protocols 
and how they enable secure and errorless communication. 
Knowledge of the details of how specific protocols work is not 
expected.
Practice(s): Developing and Using Abstractions: 4.4

Explain how physical and digital security 
measures protect electronic information.
Information that is stored online is vulnerable to unwanted access. 
Examples of physical security measures to protect data include 
keeping passwords hidden, locking doors, making backup copies 
on external storage devices, and erasing a storage device before it 
is reused. Examples of digital security measures include secure 
router admin passwords, firewalls that limit access to private 
networks, and the use of a protocol such as HTTPS to ensure 
secure data transmission.
Practice(s): Communicating About Computing: 7.2

Apply multiple methods of encryption to model 
the secure transmission of information.

Github
Module 5- Navigating the Digital World

Module 4- Computer Communication

Module 4- Computer Communication

Module 4- Computer Communication
2-NI-05 6-8

Networks & 
the Internet Communicating

2-NI-06 6-8
Networks & 
the Internet Abstraction

2-IC-23 6-8
Impacts of 
Computing Communicating

2-NI-04 6-8
Networks & 
the Internet Abstraction



KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

CSTA Standards

Encryption can be as simple as letter substitution or as complicated 
as modern methods used to secure networks and the Internet. 
Students should encode and decode messages using a variety of 
encryption methods, and they should understand the different 
levels of complexity used to hide or secure information. For 
example, students could secure messages using methods such as 
Caesar cyphers or steganography (i.e., hiding messages inside a 
picture or other data). They can also model more complicated 
methods, such as public key encryption, through unplugged 
activities.
Practice(s): Developing and Using Abstractions: 4.4

Module 4- Computer Communication

2-NI-06 6-8
Networks & 
the Internet Abstraction


