
Writing Your First Program

Writing Your First Program

© KISS Institute for Practical Robotics 1993-2026

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 1 / 135



Writing Your First Program
Table of Contents

Table of Contents

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 2 / 135



Writing Your First Program
Table of Contents

Table of Contents I
1 Table of Contents

2 Wombat Controller Guide
The Hardware
BotUI (Wombat OS)
Activity 8.0: Connecting to Your Wombat with WiFi
Activity 8.1: Accessing the KIPR Software Suite
Activity 8.2: Connecting to Your Wombat with Ethernet

3 The KIPR Software Suite
Activity 8.3: Welcome to the Software Suite
Activity 8.4: Organizing and Creating Users and Projects
Activity 8.5: Creating a User Folder
Activity 8.6: Adding a Project
Activity 8.7: A Tour of the KIPR Editor
Activity 8.8: Compiling Your First Project
Activity 8.9: Running Your Program on Your Robot

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 3 / 135



Writing Your First Program
Table of Contents

Table of Contents II
4 Learning About The C Template

Activity 8.10: The KIPR Library
Activity 8.11: Functions
Activity 8.12: Quick Reference
Activity 8.13: A Block of Code
Activity 8.14: Programming Statements
Activity 8.15: Terminating Statements
Activity 8.16: Ending with return
Activity 8.17: Program Speed
Activity 8.18: Curly Braces
Activity 8.19: Program Colors

5 Programming Basics
Activity 8.20: Comments and Pseudocode
Activity 8.21: Adding comments

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 4 / 135



Writing Your First Program
Table of Contents

Table of Contents III
Activity 8.22: Running the Program with Comments
Activity 8.23: The Importance of Commenting
Activity 8.24: Printing to the Screen
Activity 8.25: The msleep() function

6 Activity 8.26: Debugging
Common Errors
More Common Errors
Closing Notes
Reminder: Powering Off Your Wombat

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 5 / 135



Writing Your First Program
Wombat Controller Guide

Wombat Controller Guide

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 6 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

The Hardware

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 7 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

The Hardware

Figure 1: Wombat Controller Diagram

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 8 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Making the Connection

Figure 2: Yellow to yellow (Battery to
controller)

Figure 3: Small white to small white (Controller
to charger)

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 9 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Wombat Power

The KIPR Robotics Controller – Wombat, uses an external battery pack for power. It
will void your warranty to use a battery pack with the Wombat that hasn’t been
approved by KIPR.
When your Wombat is not in use please be sure to do the following:

TURN YOUR Wombat OFF
UNPLUG THE BATTERY FROM THE Wombat

Leaving your battery plugged in and your Wombat turned on will drain your battery to
the point where it can no longer be charged. If you plug your battery into the charger
and the blue lights continue to flash, then you have probably drained your battery to
the point where it cannot be charged again. If this happens you can call the KIPR office
to help troubleshoot and/or purchase a replacement - 405-579-4609.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 10 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Charging the Controller’s Battery

For charging the controller’s battery, use only the power supply which came with your
controller.

It is possible to damage to the battery from using the wrong charger or from too
deep a discharge!

The standard power pack is a lithium iron phosphate (LiFe) battery, a safer alternative
to lithium polymer batteries. The safety rules applicable for re-charging any battery still
apply:

Do NOT leave the unattended while charging.
Turn the Wombat off or unplug it from the battery while charging
Charge in a cool, open area away from flammable materials.

Figure 4: Plugging the battery into the charger

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 11 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Powering on Your Wombat

The power switch is located on the side of the Wombat controller next to the external
battery cable.

Figure 5: Wombat power switch

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 12 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Powering Off Your Wombat

1 From the Home Screen, press “Shutdown.”
2 Press “Yes” to confirm.

Figure 6: Wombat shutdown procedure

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 13 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Powering Off Your Wombat

3 After shutting down from the Home Screen, flip the power switch to off.
4 Unplug the battery, being careful to only grab the yellow connectors, not the wires.

Figure 7: Wombat power switch

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 14 / 135



Writing Your First Program
Wombat Controller Guide

The Hardware

Battery Indicator

The Wombat has a battery indicator in the bottom right. As of August 2025, this is
broken and does not reflect the actual battery life.
However, the is a yellow LED next to the red power indicator, which will only light up
when the battery gets low. If the battery gets too low you will return to the rainbow
screen.

Figure 8: Yellow LED visible only when battery
is critically low

Figure 9: Rainbow screen

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 15 / 135



Writing Your First Program
Wombat Controller Guide

BotUI (Wombat OS)

BotUI (Wombat OS)

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 16 / 135



Writing Your First Program
Wombat Controller Guide

BotUI (Wombat OS)

Backing Up Your Programs

It is important to save your code somewhere in addition to on your robot. You have
several options to back it up:

1 You can simply copy your code out of the IDE and paste it into a google document
(or similar).

2 You can use a USB flash drive to back it up.
3 You can download your code from the IDE.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 17 / 135



Writing Your First Program
Wombat Controller Guide

BotUI (Wombat OS)

Backing Up With a USB

1 Boot up and insert USB drive into the ports on the side of the Wombat.
2 Select “Settings”.
3 Select “Backup”.
4 Select “Backup”.

Figure 10: BotUI Backup Guide

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 18 / 135



Writing Your First Program
Wombat Controller Guide

BotUI (Wombat OS)

Restoring Programs With a USB

1 Boot up and insert USB drive into the ports on the side of the Wombat.
2 Select “Settings”.
3 Select “Backup”.
4 Select “Restore”.

Figure 11: BotUI Restore Guide

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 19 / 135



Writing Your First Program
Wombat Controller Guide

BotUI (Wombat OS)

Help! Where is My Home Screen?

Students may accidentally (or on purpose) hide BotUI, which will go the the desktop.
To return to BotUI, they should select the Botguy icon on the top row.

Figure 12: BotUI Return Guide

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 20 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Activity 8.0: Connecting to Your Wombat with WiFi

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 21 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Getting Network Info

1 Turn the Wombat with the black switch on the side
2 Select “About” on the main menu
3 Note the rows that say “SSID” and “Password”

If this section is blank for you, see the next section for troubleshooting steps.

Figure 13: Getting Your Network Info

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 22 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

What If My Wifi Line is Empty?

This is a known issue which affects some older WombatOS versions. The best way to
fix it is to update your Wombat! Instructions can be found on our site: kipr.org.
If you can’t update immediately, here is a quick fix:

1 Flip the “Event Mode” switch to
“Enabled.”

2 Return to the Home Screen, wait at
least 5 seconds, then return to
“About”.

3 Flip the “Event Mode” switch to
“Disabled.”

4 Return to the Home Screen, wait at
least 5 seconds, then return to
“About”.

5 You should see numbers on the Wifi
line.

Figure 14: Enabling Event Mode

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 23 / 135

https://www.kipr.org/kipr/hardware-software/kipr-wombat-firmware


Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Connecting to the Wombat on a Chromebook

1 Enter your Wifi settings. The location may be different for some brands, but is
usually on the bottom left.

2 Select your Wombat’s Wi-Fi network from the list.
3 Enter the password from the Wombat’s About page (previous slide).

Figure 15: Connecting to the Wombat’s Network

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 24 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Connecting to the Wombat on Windows

1 Find your Wombat Wi-Fi signal in your Wi-Fi settings. The menu is usually
located in the bottom left of your screen.

2 If you see “Enter the PIN from the router label”, click “Connect using a security
key instead.”

3 Enter the password from the Wombat’s About page (previous slide).

Figure 16: Connecting to the Wombat’s Network

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 25 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Connecting to the Wombat on Mac

1 Find your Wombat Wi-Fi signal in your Wi-Fi settings. The menu is located on the
top bar of your screen (left image) or in your system settings app (right image).

2 Enter the password from the Wombat’s About page (previous slide).

Figure 17: Connecting to the Wombat’s Network

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 26 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.0: Connecting to Your Wombat with WiFi

Important Note!

When you connect, you will probably see a warning like “no internet connection” or
“connected with limited access”. This is normal, proceed to the next section.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 27 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.1: Accessing the KIPR Software Suite

Activity 8.1: Accessing the KIPR Software Suite

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 28 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.1: Accessing the KIPR Software Suite

Activity 8.1: Accessing the KIPR Software Suite

1 After connecting, launch a web browser (such as Safari, Chrome or Firefox).
2 Note the set of numbers on the “WiFi” line.

Figure 18: Finding Your Wombat’s IP Address

Note
This is called an “IP Address.” You can
think of it as the building address, but to
access the IDE, we also need to know
which door to knock on. That is called
the “port number,” and by default it is
“8888.”

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 29 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.1: Accessing the KIPR Software Suite

Activity 8.1: Accessing the KIPR Software Suite

To access the KIPR IDE, we need to combine the IP address with the port number, like
this:

Enter this into your browser’s URL bar, making sure to match the punctuation exactly.
You should see the KIPR IDE (reference image next slide). If you need to use an
ethernet cable to connect refer to the next section, “Connecting to Your Wombat with
Ethernet.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 30 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.1: Accessing the KIPR Software Suite

KIPR IDE Reference Image

Figure 19: KIPR IDE Homepage

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 31 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Activity 8.2: Connecting to Your Wombat with Ethernet

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 32 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Activity 8.2: Connecting to Your Wombat with Ethernet

You can also connect to your Wombat over a wired connection (ethernet). Ethernet can
be more stable that WiFi, but only one person can be connected at a time. If you
successfully connected in the previous section, you may proceed to the next section

The KIPR Software Suite .

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 33 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Activity 8.2: Connecting to Your Wombat with Ethernet

1 Connect your device that has an Ethernet port to the Wombat with an ethernet
cable.

2 If you have no Ethernet port you need a dongle to convert USB to Ethernet and an
Ethernet cable (refer to next slide).

Figure 20: Wombat Ethernet Connection Graphic

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 34 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Using a Dongle
If your device does not have an ethernet port, you will need a dongle to convert it
to USB.
Make sure the dongle you purchase is compatible with your operating system
(Windows, Mac, or Chrome)

Figure 21: Ethernet Dongle

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 35 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Enabling Event Mode

1 Make sure you have everything plugged into your wombat (Ethernet or Ethernet +
Dongle).

2 This will allow only one person at a time to program the robot but it will ensure
that you can connect if there is a lot of WiFi Interference.

3 FIRST you must use the UI on your robot by going to the “About” screen, then
toggle to Event Mode Enabled.

Figure 22: Enabling Event Mode

Hint
If LAN says “0.0.0.0”, simply return to the
Home Screen, the come back to “About.”

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 36 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Getting Network Info

Once plugged into the Wombat, with Event Mode Enabled, note the IP address on the
“LAN” line. This is slightly different from the WiFi IP address, so be careful.

Figure 23: Ethernet IP Address

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 37 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

Activity 8.1: Accessing the KIPR Software Suite

1 Launch a web browser (such as Safari, Chrome or Firefox).
2 Enter the address into the URL bar.

This IP address and port tells the browser where to find the KIPR IDE. See the next
slide for an sample image.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 38 / 135



Writing Your First Program
Wombat Controller Guide

Activity 8.2: Connecting to Your Wombat with Ethernet

KIPR IDE Reference Image

Figure 24: KIPR IDE Homepage

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 39 / 135



Writing Your First Program
The KIPR Software Suite

The KIPR Software Suite

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 40 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.3: Welcome to the Software Suite

Activity 8.3: Welcome to the Software Suite

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 41 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.3: Welcome to the Software Suite

Activity 8.3: Welcome to the Software Suite

To make it easier for you to learn and use a programming language, KIPR provides a
web-based Software Suite, which will allow you to write and compile source code using
C, C++, Python, and block coding (v. 32+). The development package will work with
almost any web browser except Internet Explorer.
Click on “KISS IDE” and proceed to the next slide.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 42 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.4: Organizing and Creating Users and Projects

Activity 8.4: Organizing and Creating Users and Projects

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 43 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.4: Organizing and Creating Users and Projects

Activity 8.4: Organizing and Creating Users and Projects

Create a folder for each student. This will make is easy for them to find their projects.
Do not use the default user.
When creating a new user (folder) or a new project do not:

Put any special characters or periods, etc. on it.
This will eventually interfere with your project and later you will have problems.

Examples of good user(folder) names:
Botguy folder
sarah folder
Sarah Projects

Examples of good project names:
Activity 1
Hello World
Functions Introduction

Bad examples:
m.j.c.
my amazing project!
Mrs Davis’s project.
:)

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 44 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.5: Creating a User Folder

Activity 8.5: Creating a User Folder

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 45 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.5: Creating a User Folder

Activity 8.5: Creating a User Folder

1 Click on KISS IDE.
2 Under Project Explorer click the + sign to add a user.
3 Name you new user (use your name, not mine!).
4 Click create.

Figure 25: Creating Your User

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 46 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.6: Adding a Project

Activity 8.6: Adding a Project

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 47 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.6: Adding a Project

Activity 8.6: Adding a Project

1 Proceed back to “Project Explorer” and select the user name you created from the
drop down. You should see the folder you created.

2 Click “+ Add Project.”
3 Continue to the next section for naming you project.

Figure 26: Adding a project

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 48 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.6: Adding a Project

Naming Your Project

1 Enter the name of your project (e.g. “First Project”).
2 Leave the “Programming Language” as “C” and the “Source file name” as main.c.
3 Click “Create.”

Figure 27: Naming your project

Warning
Make sure you don’t use any special
characters! This includes “.”, “@”, “!”, or
any emojis!

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 49 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Activity 8.7: A Tour of the KIPR Editor

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 50 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Activity 8.7: A Tour of the KIPR Editor

This is how every project will look when you first start. Proceed to the next section for
more information.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 51 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Menu

“Menu” takes you right back to the Main Menu of the KIPR Software Suite.

Figure 28: Menu button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 52 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Save

“Save main.c” saves your project code. A successful Compile also saves your code
eliminating the need to use save main.c.

Figure 29: Save button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 53 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

File Menu

“File Menu” gives you the option to delete or download main.c directly to your
computer. This is another way to back up your code.

Figure 30: File menu button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 54 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Project Menu

“Project Menu” gives you the option to delete or download the entire project directly to
your computer. This is another way to back up your code.

Figure 31: Project menu button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 55 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Undo and Redo

“Undo” undoes the last keystrokes (exactly like Control + Z). “Redo” puts the undone
keystrokes back in.

Figure 32: Undo and Redo buttons

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 56 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.7: A Tour of the KIPR Editor

Indent

“Indent” will format all of the code so it is easier to read. You should use this frequently!

Figure 33: Indent button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 57 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.8: Compiling Your First Project

Activity 8.8: Compiling Your First Project

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 58 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.8: Compiling Your First Project

Activity 8.8: Compiling Your First Project

“Compile” converts the source code (what you see in the editor below) to machine code
that the robot can understand. If it compiles successfully, it also automatically saves the
code. If it fails, it will give debugging information to help you figure out what went
wrong. There is more explanation on debugging later in this document.

Figure 34: Compile button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 59 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.9: Running Your Program on Your Robot

Activity 8.9: Running Your Program on Your Robot

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 60 / 135



Writing Your First Program
The KIPR Software Suite

Activity 8.9: Running Your Program on Your Robot

Activity 8.9: Running Your Program on Your Robot

“Run” executes (runs) the code that was successfully compiled.

Figure 35: Run button

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 61 / 135



Writing Your First Program
Learning About The C Template

Learning About The C Template

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 62 / 135



Writing Your First Program
Learning About The C Template

Activity 8.10: The KIPR Library

Activity 8.10: The KIPR Library

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 63 / 135



Writing Your First Program
Learning About The C Template

Activity 8.10: The KIPR Library

Activity 8.10: The KIPR Library

Line 1 includes the KIPR library. All programs must include the KIPR library, as it
contains all the functions you need to control your robot.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 64 / 135



Writing Your First Program
Learning About The C Template

Activity 8.10: The KIPR Library

Comments

Throughout this section, we will be annotating the example code with comments. A
comment starts with “//”, and when the computer sees this pattern, it will ignore
everything else on that line. Programmers use comments to explain their code.

1 #include <kipr/wombat.h>
2

3 // Notice the green highlighting: this helps you identify comments
4 int main () // The computer will ignore this: you can write anything here
5 {
6 printf("Hello World!\n");
7 return 0;
8 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 65 / 135



Writing Your First Program
Learning About The C Template

Activity 8.11: Functions

Activity 8.11: Functions

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 66 / 135



Writing Your First Program
Learning About The C Template

Activity 8.11: Functions

Activity 8.11: Functions

A “function” defines a list of actions to take, in a similar manner to a recipe. Executing
a function or “calling” (using) the function means the controller will follow the
instructions contained in the function.
Example: You might want a robot with a clean_house() function that could mean
vacuum, dust, mop, change the linens, wash the windows, etc. . . all the commands
specified in the function are executed.
Line 3 of the template defines the “main” function. When you run your program, the
main function is always executed.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 67 / 135



Writing Your First Program
Learning About The C Template

Activity 8.12: Quick Reference

Activity 8.12: Quick Reference

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 68 / 135



Writing Your First Program
Learning About The C Template

Activity 8.12: Quick Reference

Activity 8.12: Quick Reference

There are many functions in the KIPR library. Here is a quick reference for some of the
most common ones. Don’t worry if this seems overwhelming, these will all be explained
more thouroughly in later documents.

1 printf("text\n"); // Prints text to the display
2 motor(port, %power); // Activate motor in port at % power
3 msleep(milliseconds); // Program pauses for specified milliseconds
4 ao(); // [a]ll [o]ff, turns all motors off
5 enable_servos(); // Turns servo ports on
6 set_servo_position(port, position); // Moves servo in port to position
7 disable_servos(); // Turns off servo ports
8 digital(port); // Get digital sensor value in port
9 analog(port); // Get digital sensor value in port

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 69 / 135



Writing Your First Program
Learning About The C Template

Activity 8.13: A Block of Code

Activity 8.13: A Block of Code

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 70 / 135



Writing Your First Program
Learning About The C Template

Activity 8.13: A Block of Code

Activity 8.13: A Block of Code

The area between the { and } (lines 4 and 7) is called a “block of code.” Inside this
block, we write lines of code called “programming statements.”

1 #include <kipr/wombat.h>
2

3 int main ()
4 { // Block begins here
5 printf("Hello World!\n");
6 return 0;
7 } // Block ends here

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 71 / 135



Writing Your First Program
Learning About The C Template

Activity 8.14: Programming Statements

Activity 8.14: Programming Statements

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 72 / 135



Writing Your First Program
Learning About The C Template

Activity 8.14: Programming Statements

Activity 8.14: Programming Statements

Each “programming statement” is an action to be executed by the robot in the order
that it is listed. A program may have any number of programming statements.

1 #include <kipr/wombat.h>
2

3 int main ()
4 { // Block begins here
5 printf("Hello World!\n"); // Programming statement
6 return 0; // Programming statement
7 } // Block ends here

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 73 / 135



Writing Your First Program
Learning About The C Template

Activity 8.15: Terminating Statements

Activity 8.15: Terminating Statements

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 74 / 135



Writing Your First Program
Learning About The C Template

Activity 8.15: Terminating Statements

Activity 8.15: Terminating Statements

Terminating statements end each programming statement. Use a semicolon (unless it is
followed by a new block of code) to end the programing statement. This is similar to an
English sentence, which ends with a period.
In English a statement that is missing punctuation is a run-on sentence or incomplete
sentence. A semicolon is similar to an “enter” or “return” key on your keyboard, it tells
the computer to proceed to the next line.
Notice how the pogramming statements on lines 5 and 6 end with semicolons:

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 75 / 135



Writing Your First Program
Learning About The C Template

Activity 8.16: Ending with return

Activity 8.16: Ending with return

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 76 / 135



Writing Your First Program
Learning About The C Template

Activity 8.16: Ending with return

Activity 8.16: Ending with return

The main() function ends with a return statement, which is the response or answer to
the computer (or robot). In this case, the “answer” back to the computer is 0. The
return statement is the last line before the } brace.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 77 / 135



Writing Your First Program
Learning About The C Template

Activity 8.17: Program Speed

Activity 8.17: Program Speed

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 78 / 135



Writing Your First Program
Learning About The C Template

Activity 8.17: Program Speed

Activity 8.17: Program Speed

Computers read a program like you read a book: starting at the top and reading line by
line to the bottom. Computers read incredibly fast: the Wombat reads 800: million
lines per second!

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 return 0;
7 }

Figure 36: Program flowchart

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 79 / 135



Writing Your First Program
Learning About The C Template

Activity 8.18: Curly Braces

Activity 8.18: Curly Braces

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 80 / 135



Writing Your First Program
Learning About The C Template

Activity 8.18: Curly Braces

Activity 8.18: Curly Braces

The curly braces organizes the programming statements while executing them from top
to bottom.

1 #include <kipr/wombat.h>
2

3 int main ()
4 { // Start
5 printf("Hello World!\n");
6 return 0;
7 } // Stop

Figure 37: Program flowchart

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 81 / 135



Writing Your First Program
Learning About The C Template

Activity 8.19: Program Colors

Activity 8.19: Program Colors

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 82 / 135



Writing Your First Program
Learning About The C Template

Activity 8.19: Program Colors

Activity 8.19: Program Colors

The KISS IDE highlights certain parts of the program to make it easier to read.
Comments appear in green.
Keywords appear in bold blue.
Text strings appear in red.
Numbers appear in aqua.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 // This program will display "Hello World!"
6 printf("Hello World!\n");
7 return 0;
8 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 83 / 135



Writing Your First Program
Programming Basics

Programming Basics

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 84 / 135



Writing Your First Program
Programming Basics

Activity 8.20: Comments and Pseudocode

Activity 8.20: Comments and Pseudocode

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 85 / 135



Writing Your First Program
Programming Basics

Activity 8.20: Comments and Pseudocode

Activity 8.20: Comments and Pseudocode
Read and discuss the next two slides with
a partner to understand pseudocode.
Pseudocode means “false code”. Easy to
understand pseudocode can be used as
commenting on what you expect your
robot to do.

1 // Move forward
2 // Turn right
3 // Stop

Discuss with a partner why it might be
important to create pseudocode. When
finished, proceed to the next section.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 86 / 135



Writing Your First Program
Programming Basics

Activity 8.20: Comments and Pseudocode

Comments as pseudocode

Using comments as pseudocode can help you keep track of what is going on in the
program. You can make a flow chart or list and then convert it to pseudocode.
As we saw earlier, a comment begins with two slashes: “//”. The computer will ignore
anything in a comment, but you can refer to it later.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n"); // Prints "Hello World!" to the screen
6 return 0;
7 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 87 / 135



Writing Your First Program
Programming Basics

Activity 8.20: Comments and Pseudocode

Comments as attribution

Comments are also commonly used to give “attribution” in code. This means that:
Anyone reading someones code knows who the rightful author is.
If anyone wants to borrow some parts of the code they can ask permission and
then accurately source where they got the code from.

1 // Author: Jon Snow
2 // Program purpose: Prints text to the screen
3 // Created: 01/01/1970
4 #include <kipr/wombat.h>
5

6 int main ()
7 {
8 printf("Hello World!\n"); // Prints "Hello World!" to the screen
9 return 0;

10 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 88 / 135



Writing Your First Program
Programming Basics

Activity 8.21: Adding comments

Activity 8.21: Adding comments

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 89 / 135



Writing Your First Program
Programming Basics

Activity 8.21: Adding comments

Activity 8.21: Adding comments

Add the // Prints "Hello World!" to screen comment to the program.
Just like using Word or Google Docs, you can click to set your cursor and then make
space for the comment. Type the comment into your program. The comment can go
on the line before the printf function or on the same line as the function.
After adding the comment, compile your program and see what happens! When you
have finished, continue to the next section.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 // You can put the comment here...
6 printf("Hello World!\n"); // Or you can put the comment here
7 return 0;
8 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 90 / 135



Writing Your First Program
Programming Basics

Activity 8.22: Running the Program with Comments

Activity 8.22: Running the Program with Comments

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 91 / 135



Writing Your First Program
Programming Basics

Activity 8.22: Running the Program with Comments

Activity 8.22: Running the Program with Comments

1 From the Wombat Home Screen, select “Programs.”
2 This will take you to a list of programs currently on your controller.
3 Select the program you just compiled.
4 Press “Run” to run the program.
5 Pay close attention: do the the comments appear on the screen?

Figure 38: Running your program

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 92 / 135



Writing Your First Program
Programming Basics

Activity 8.23: The Importance of Commenting

Activity 8.23: The Importance of Commenting

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 93 / 135



Writing Your First Program
Programming Basics

Activity 8.23: The Importance of Commenting

Activity 8.23: The Importance of Commenting

You should start adding your own attribution to your code from now on! But remember,
if you borrow even a small part of code from someone else, you must also give them
attribution in your comments.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 // Borrowed with permission from Sally
6 // This code makes Wombat 0328 drive straight
7 motor(0, 93);
8 motor(3, 100);
9 // End of borrowed code

10 msleep(1000);
11 return 0;
12 }

It’s important to give appropriate attribution not only when copying code exactly, but
even when taking someone’s idea (or intellectual property) and changing it a little bit
for your needs. When else might you need to give credit for someone else’s work?

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 94 / 135



Writing Your First Program
Programming Basics

Activity 8.23: The Importance of Commenting

Commenting Multiple Lines of Code

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 // Forward
6 motor(0, 100);
7 motor(3, 100);
8 msleep(1000);
9

10 /*
11 motor(0, -100);
12 msleep(3000);
13 motor(0, -100);
14 motor(3, 100);
15 msleep(3000);
16 */
17 return 0;
18 }

Block Comments
Everthing between the /* and */ is a
comment and will be ignored by the
computer. This is called a “block
comment.” You can use block comments
to debug your code by making the
computer ignore certain parts of your
program.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 95 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Activity 8.24: Printing to the Screen

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 96 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Using printf

1 Starting a new project.
2 Proceed back to “Project Explore” and select the User Name (folder) you created

from the drop down.
3 Click “+ Add Project”, you are adding a project to your folder.
4 Name your project, “Printf Statements”.
5 Proceed to the next section.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 97 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Hello, who?

1 Write a program the displays “Hello World!”, then displays your name.
2 Compile and run the program on your Wombat.

Pseudocode (Task Analysis)

1 // Display "Hello world!" on the screen.
2 // Display "Hello name!" on the screen.

What function do you think you should use to print your name to the screen?

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 98 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

The printf() Function

The printf() function does exactly what we want! We just need to put the text we
want inside quotation marks in the parenthesis.

1 printf("This will be printed to the Wombat screen\n");

What does the \n do? It is like telling you computer to press the “Enter” key at the
end of the statement. Without it, multiple printf() statements will all try to print on
the same line!

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 99 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

8.24: Possible Solution

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6

7 printf("Hello Thomas!\n");
8

9 return 0;
10 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 100 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Running Your printf() Program

1 Make sure to compile your program. If you see a “Compilation Succeeded”
message, proceed to the next step.

2 On the Wombat, follow the same procedure as before to run the program.

Figure 39: Running your program

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 101 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Possible output

Your output may differ slightly, just make sure you see the lines “Hello World” and
“Hello, name”

Figure 40: printf() output

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 102 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Making Observations

What did you notice when you ran the program? Try running it again, paying close
attention to the output. Discuss your observations with your partner.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 103 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Possible Observations

1 The two statements are on different lines.
2 “Hello World” and “Hello name” seemed to appear at the same time.

We know that they are on different lines because we used \n, but why did they appear
at the same time? Discuss with you partner.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 104 / 135



Writing Your First Program
Programming Basics

Activity 8.24: Printing to the Screen

Program Speed

Recall that the controller reads the code and goes to the next line faster than a blink of
your eye. At 800MHz, the controller is executing ~800: Million lines of code/second!
What if we want to slow it down?

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 105 / 135



Writing Your First Program
Programming Basics

Activity 8.25: The msleep() function

Activity 8.25: The msleep() function

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 106 / 135



Writing Your First Program
Programming Basics

Activity 8.25: The msleep() function

Activity 8.25: The msleep() function

To slow the robot down, we can use the msleep() function to tell it to pause for a
certain amount of time before it runs the next command. We tell it exactly how much
time to wait by putting a number inside the parenthesis, like this:

1 // This will pause the robot for 1000 milliseconds (1 second)
2 msleep(1000);

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 107 / 135



Writing Your First Program
Programming Basics

Activity 8.25: The msleep() function

Using msleep

1 Write a program that displays “Hello World”, pauses two seconds, then displays
“Hello name.”

2 Place an msleep(milliseconds); between your two printf() statements.
Pseudocode (Task Analysis)

1 // 1. Display "Hello World!" on the screen.
2 // 2. Pause for 2 seconds.
3 // 3. Display your name on the screen.

You saw before that msleep(1000); will make the controller “pause” for 1 second (the
m stands for milliseconds or 1/1000 of a second) before going to the next line. Your
program must tell the robot to wait for 2 seconds before going to the next command.
Guided Questions: How many seconds is 2000m? 3000m? How many milliseconds
would you need to run the robot for 4 seconds?

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 108 / 135



Writing Your First Program
Programming Basics

Activity 8.25: The msleep() function

msleep() Solution

Explain to a partner what this program will do.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n");
6 msleep(2000);
7 printf("Hello Thomas!\n");
8

9 return 0;
10 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 109 / 135



Writing Your First Program
Programming Basics

Activity 8.25: The msleep() function

Writing Code From Pseudocde

It is prudent to add your pseudocode as comments in your final program.
1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n"); // Print "Hello World"
6 msleep(2000); // Pause for 2 seconds
7 printf("Hello Thomas!\n"); // Print "Hello Thomas"
8

9 return 0;
10 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 110 / 135



Writing Your First Program
Activity 8.26: Debugging

Activity 8.26: Debugging

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 111 / 135



Writing Your First Program
Activity 8.26: Debugging

Activity 8.26: Debugging

Debugging is a very important skill for students to learn. It promotes problem solving,
independence, and reading for meaning. This skill may have to be taught several times
throughout the year. Remember, professional programmers spend most of their time
debugging. Bugs don’t make you a bad programmer!
Objectives: Students will learn the importance of and how to debug their programs.
Materials:

Built Robot.
Computer.

Activity: Follow the next slides to learn about debugging by leaving off important
programing information, compiling, and find out how to read the compiler error
messages.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 112 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Common Errors

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 113 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Semicolon

1 Leave off a terminating semicolon and see what happens.
2 Compile the program. What message appeared? Did the “Compilation succeeded”

message appear?
3 Proceed to the next section to learn about reading errors.

1 #include <kipr/wombat.h>
2

3 int main ()
4 {
5 printf("Hello World!\n") // Oops! I forgot a semicolon!
6 msleep(2000);
7 printf("Hello Thomas!\n");
8

9 return 0;
10 }

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 114 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Semicolon Error Message

Notice how the compiler helpfully tells you exactly where to look. We forgot a
semicolon on line 5 (you can see the line numbers on the left margin)!

Figure 41: Missing semicolon error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 115 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Semicolon Error Message

1 Ignore the first line and look at the second line to find the error.
2 This error says that line 5 it expected to see a “;” before msleep(), meaning on

line 4.
It may also be the next programming statement before line 5 (msleep()). If there is
white space it could be line 4 or line 3.

3 Fix one error at a time and then recompile. Fixing one might fix all the errors.
4 5:28 means line 5 column 28. You cannot see columns, so just ignore that part.

Figure 42: Missing semicolon error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 116 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Misspelled Function

1 Spell msleep wrong.
2 Compile and read the error message. What does it say?
3 Proceed to the next slide for help reading the error.

Hints:
Always correct the top error first, it may correct all the other errors.
Look at the line number to help find the error.
Remember if it says before line 10, then it is line 9, or, if line 9 is blank, it could be
8 or 7.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 117 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Misspelled Function Error Message

Example error message for msleep() misspelling (mlseep()).

Figure 43: Misspelled function error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 118 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Misspelled Function Error Message

“Implicit declaration of function. . . ” is usually a spelling error.
1 Reading the Error: In this case proceed to the bottom of the errors. Notice it

shows you in two places that it is spelled wrong.
2 This error says implicit declaration of function msleep().
3 Fix one error at a time and then recompile. It might fix all the errors.
4 Fix your error and compile it before moving to the next slide.

Figure 44: Misspelled function error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 119 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Extra Function Arguments

1 Put a comma in your msleep, like this:
1 msleep(2,000);

2 Compile and read the error. What does it say?
3 Proceed to the next slide for help reading the error.

Hints:
Always correct the top error first, it may correct all the other errors.
Look at the line number to help find the error.
Remember if it says before line 10, then it is line 9, or, if line 9 is blank, it could be
8 or 7.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 120 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Extra Function Arguments Error Message

1 Reading the Error: in this case the error is on line 6, “too many arguments to
function msleep”.

2 msleep() has only one argument of time (2000).
3 Unlike normal writing, you cannot use commas in large numbers because the

comma indicates that there are two arguments (“2” and “000”).
4 Fix one error at a time and then recompile. It might fix all the errors.
5 Fix your error and compile it before moving to the next slide.

Figure 45: Extra function arguments error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 121 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Braces

1 Remove a curly brace. { }
2 Compile and read the error message. What does it say?
3 Proceed to the next slide for help reading the error.

Hints:
Always correct the top error first, it may correct all the other errors.
Look at the line number to help find the error.
Remember if it says before line 10, then it is line 9, or, if line 9 is blank, it could be
8 or 7.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 122 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Closing Brace Error Message

1 Reading the Error: in this case the error is on line 9, expected declaration or
statement at end of input.

2 Missing a “}” after return 0; on line 9
3 Fix one error at a time and then recompile. It might fix all the errors.
4 Fix your error and compile it before moving to the next slide.

Figure 46: Missing closing brace error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 123 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

Missing Opening Brace Error Message

Figure 47: Missing opening brace error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 124 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

O vs. 0

1 Replace the number “0” with the letter “O”.
2 Compile and read the error message. What does it say?
3 Proceed to the next slide for help reading the error.

Hints:
Always correct the top error first, it may correct all the other errors.
Look at the line number to help find the error.
Remember if it says before line 10, then it is line 9, or, if line 9 is blank, it could be
8 or 7.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 125 / 135



Writing Your First Program
Activity 8.26: Debugging

Common Errors

O vs. 0 Error Message

Figure 48: O vs. 0 error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 126 / 135



Writing Your First Program
Activity 8.26: Debugging

More Common Errors

More Common Errors

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 127 / 135



Writing Your First Program
Activity 8.26: Debugging

More Common Errors

Missing Parenthesis Error Message

Figure 49: Missing parenthesis error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 128 / 135



Writing Your First Program
Activity 8.26: Debugging

More Common Errors

Extra Semicolon Error Message

Figure 50: Extra semicolon error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 129 / 135



Writing Your First Program
Activity 8.26: Debugging

More Common Errors

Missing Library Error Message

Figure 51: Missing library error message

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 130 / 135



Writing Your First Program
Activity 8.26: Debugging

Closing Notes

Closing Notes

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 131 / 135



Writing Your First Program
Activity 8.26: Debugging

Closing Notes

Closing Notes

Figure 52: Sample Chart

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 132 / 135



Writing Your First Program
Activity 8.26: Debugging

Closing Notes

Closing Notes

Hints for Teachers:
Help students read the error, but do not give them the answer.
Revisit debugging as students are struggling to read errors.
Create a programs with errors and have students debug them.
Create worksheets for students to debug.

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 133 / 135



Writing Your First Program
Activity 8.26: Debugging

Reminder: Powering Off Your Wombat

Reminder: Powering Off Your Wombat

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 134 / 135



Writing Your First Program
Activity 8.26: Debugging

Reminder: Powering Off Your Wombat

Reminder: Powering Off Your Wombat

1 From the Home Screen, press “Shutdown.”
2 Press “Yes” to confirm.
3 After shutting down from the Home Screen, flip the power switch to off.
4 Unplug the battery, being careful to only grab the yellow connectors, not the wires.

Figure 53: Wombat shutdown procedure
Figure 54: Wombat power switch

© KISS Institute for Practical Robotics 1993-2026 Writing Your First Program 135 / 135


	Table of Contents
	Wombat Controller Guide
	The Hardware
	BotUI (Wombat OS)
	Activity 8.0: Connecting to Your Wombat with WiFi
	Activity 8.1: Accessing the KIPR Software Suite
	Activity 8.2: Connecting to Your Wombat with Ethernet

	The KIPR Software Suite
	Activity 8.3: Welcome to the Software Suite
	Activity 8.4: Organizing and Creating Users and Projects
	Activity 8.5: Creating a User Folder
	Activity 8.6: Adding a Project
	Activity 8.7: A Tour of the KIPR Editor
	Activity 8.8: Compiling Your First Project
	Activity 8.9: Running Your Program on Your Robot

	Learning About The C Template
	Activity 8.10: The KIPR Library
	Activity 8.11: Functions
	Activity 8.12: Quick Reference
	Activity 8.13: A Block of Code
	Activity 8.14: Programming Statements
	Activity 8.15: Terminating Statements
	Activity 8.16: Ending with return
	Activity 8.17: Program Speed
	Activity 8.18: Curly Braces
	Activity 8.19: Program Colors

	Programming Basics
	Activity 8.20: Comments and Pseudocode
	Activity 8.21: Adding comments
	Activity 8.22: Running the Program with Comments
	Activity 8.23: The Importance of Commenting
	Activity 8.24: Printing to the Screen
	Activity 8.25: The msleep() function

	Activity 8.26: Debugging
	Common Errors
	More Common Errors
	Closing Notes
	Reminder: Powering Off Your Wombat


