
Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Understanding and
Using Variables

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Understanding and Using Variables

Slide

3-4

5

6

7

8

9

Topic

Variables

Variable Names

Working With Variables

Using Variables for Drive Motors

Using Variables for Servo Motors

Shutting Down a Servo

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Some reasons to use a variable:

1. You don’t have to remember which value is a certain
servo position – the computer remembers for you

2. It makes your program easier to read and understand

3. Makes it easier to debug your program

4. You can do computation and store results in variables

Variables

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• A variable is a named container that stores a type of value
A variable has the following three components:
a. the type of data it stores

(holds),
b. the name, and
c. the value it is currently

storing.

• Visualize/think of a variable like a storage space that holds a
value with a name on it…

• Servo “up” position

• Servo “down”
position

• Etc.

int arm_up;
arm_up = 1230;

a b c Use int as your
data type if you want
to store whole
numbers (integers)

1230arm_up

400arm_down

Variables

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Each variable is given a unique name so we can identify
it…
• Variable names can be almost anything you would like.

• Variable names can contain letters, numbers, and underscores
(“_”).

• Variable names cannot begin with a number.

• Variable names should be meaningful and not generic like “x”

int arm_up; // variable "declaration"
arm_up = 1230; // variable "initialization"

You can do the declaration and initialization at the
same time
int arm_up = 1230;

Variable Names

An Example:

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

1. Declaring a variable:

int arm_up;

2. Initializing/setting a variable:

arm_up = 1230;

3. Calling a variable:

arm_up

What is int?

int stands for “integer”. This
means that the variable arm_up
will have an integer (whole
number) value.

See the Team Homebase resources for
more information on data types

Working with Variables

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Remove the forward
slashes from your
comments, add int

for the data type and
since it is now code
add the semicolon

Variable declarations generally go inside a block of code (i.e., inside the { })
immediately after the starting curly brace (i.e., {) and before any other code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include <kipr/wombat.h>

int main()
{

// left = 3
// right = 0
printf(“Drive and turn\n”);
motor(3,100);
motor(0,100);
msleep(1000);

motor(3,-50);
motor(0,50);
msleep(500):

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

#include <kipr/wombat.h>

int main()
{

int left = 3;
int right = 0;
printf(“Drive and turn\n”);
motor(left,100);
motor(right,100);
msleep(1000);

motor(left,-50);
motor(right,50);
msleep(500):

return 0;
}

Using Variables
for Drive Motors

Source Code Source Code

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

How many *potential* lines of code have to change if the arm servo is switched to port 3?

Variable declarations generally go inside a block of code (i.e., inside the { }),
immediately after the starting curly brace (i.e., {) and before any other code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <kipr/wombat.h>

int main()
{

int arm_port = 0;
int arm_up = 1230;
int arm_down = 400;
printf(“Wave servo\n”);
enable_servos();
set_servo_position(arm_port,arm_up);
msleep(500);
set_servo_position(arm_port,arm_down);
msleep(500);

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

#include <kipr/wombat.h>

int main()
{

// arm_port = 0;
// arm_up = 1230;
// arm_down = 400;
printf(“Wave servo\n”);
enable_servos();
set_servo_position(0,1230);
msleep(500);
set_servo_position(0,400);
msleep(500);

return 0;
}

Using Variables
for Servo Motors

Source Code Source Code

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Move the Servo Arm Using a Loop
1. Set counter to 200.
2. Set servo position to counter.
3. Enable servos.
4. Loop:Is counter < 1800?

Wait for 0.1 seconds.
Add 100 to counter.
Set servo position to counter.

5. Disable servos.
6. End the program.

Notice the counter variable value
changes every time the loop comes
around. This is known as iterating
a variable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

#include <kipr/wombat.h>

int main()
{

int counter = 200;
set_servo_position(0, counter);
enable_servos();
while(counter < 1800)
{

msleep(100);
counter = counter + 100;
set_servo_position(0, counter);

}
msleep(100);
disable_servos();
return 0;

}

Slowing Down a Servo Iterating a
Variable

Source Code

