
Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Precision Driving - Motor
Position Counters

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Precision Driving -
Motor Position Counters

Slide

4

5-6

7-9

10-11

12-13

14

15-17

Topic

Motor Position Counter

Seeing Counters on Screen

Drive to a Specific Point

Drive to a Specific Point + Backup

Drive a Set Distance and Back Up to Start

Driving a Set Distance with Arguments

Drive Straight

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Precision Driving -
Motor Position Counters

Slide

18

19

20

21

Topic

Precision Turning

Turning Left 90 Degree with MPC

Turning Right 90 Degree with MPC

Turning Any Degree with MPC

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Each motor used by the DemoBot has a built-in motor position
counter, which you can use to calculate the distance traveled by
the robot!

get_motor_position_counter(0) — OR — gmpc(0)
// Tells us the number of ticks the motor on port #0 has rotated.

clear_motor_position_counter(0); — OR — cmpc(0);
// Resets the tick counter to 0 for the motor on port #0.

• The motor position is measured in
“ticks”.

• Botball motors have approximately 1800 ticks per
revolution.

• Use wheel circumference divided by 1800 to calculate
distance!

Similar to how a clock is divided into

60-second intervals (ticks).

Motor Port #
(0 to 3)

Motor Port #
(0 to 3)

Motor Position Counter

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

You can access the Motors from the Motors and Sensors
section

• This is very helpful to test your motors and see the
actual motor position counters “in action”

Seeing Counters on Screen

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Select motor port (allows you
to select the motor of your
choice)

To clear (reset) the counter

Use your hand to rotate
the robot’s wheel

(plugged into port 0)
and watch the position

counter.

You can also place your robot on a surface and roll it forward
to measure the # ticks from a starting position to another
location or object

What happens if you
turn the wheel in the
opposite direction?

Motor Position
in “ticks”

Seeing Counters on Screen

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

You can also place your robot on a surface and roll it forward to measure the
ticks from a starting position to another location or object.

Place the robot in the start box of KIPR Mat A and using the motors/widget screen:
1) reset the left motor counter
2) manually push the robot forward to circle 9 on the mat

3) visually record/remember the tick count

Description: Write your program to drive the DemoBot forward that many
“ticks” and then stop.

Pseudocode
Generate it!

Drive to a Specific Point

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution:

1. Reset motor position
counter.

2. Loop: Is counter <
my distance?

3. Drive forward.
4. Stop motors.
5. End the program.

Pseudocode

#include <kipr/wombat.h>

int main()
{

int distance = 4500; // in ticks

cmpc(0);

while (gmpc(0) < distance)
{

motor(0, 50);
motor(3, 50);

}
ao();

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Source Code

Drive to a Specific Point

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Reflection: What did you notice after you ran the
program?

• How far did the robot travel? Was it always the same (you tested it
more than once, right)?
• Your robot most likely went FURTHER than you programmed it to (check the motors

screen after it stops to see the actual final tick count). Why? Hint: inertia

• Change your loop so that it actually goes to “distance - (actual - desired)”:

while(gmpc(0) < distance - (4832 – distance))

• How could you modify your program to travel a specific distance in
millimeters? (Hint: Use wheel circumference (in mm) divided by 1800 to
calculate number of mm per tick!)

Drive to a Specific Point

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Description: Write your program to drive the DemoBot forward to a
specific point and then back up to where you started.

Pseudocode
// 1. Drive forward.
// 2. Loop: Is motor position at specific
count?
// 3. Drive Backwards to specific distance.
// 4. End the program.

1. Drive forward.
2. Stop at specific

distance
3. Drive backwards.
4. Stop at starting point.

Drive to a Specific
 Point + Backup

Comments

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution:

Now back up to
position (tick count 0).
Note: clear counter not
needed this time

#include <kipr/wombat.h>

int main()
{

int distance = 4500; // in ticks
cmpc(0);
while (gmpc(0) < distance)
{

motor(0, 50);
motor(3, 50);

}
ao();
msleep(2000); // see it stop?
while (gmpc(0) > 0)
{

motor(0, -50);
motor(3, -50);

}
ao();
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Source Code

Drive to a Specific
Point + Backup

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Drive a Set Distance
and Back Up to Start

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Drive a Set Distance
 and Back Up to Start

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

 Driving a Set Distance with
Arguments

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>
void Drive(int Lpower, int Rpower, int distance);
int main()
{

Drive (100,100,5000);

 motor (0,0);
motor (3,0);
msleep (500);

return 0;
}
void Drive (int Lpower, int Rpower, int distance)
{
 cmpc(0);
 while (gmpc(0) < distance)
 {
 motor (0,Lpower);
 motor (3,Rpower);

 }

Source Code

This Allows you to
set your motor

power and
distance within

the int main

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Reflection: What did you notice after you ran the program?

• Did the robot go straighter than in the previous program?

• How could you use this technique whenever you wanted to drive
straight? (Hint: Consider writing a function with an argument for the
distance.)

• How could you modify your program to go straight at different
speeds?

Drive Straight!

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

1. Clear both motor counters
2. Loop: If total distance < 14000

Move left motor 75% power
If: Right is behind left

speed up right
Else:

slow down right
3. Stop motors
4. End the program

Description: Write a program that drives the DemoBot straight for
14000 ticks by adjusting the right motor power so that the position of
the left motor is the same (or close) to the right.

Analysis: How can you adjust the left motor’s position?

Drive Straight!

Pseudocode

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution:

1. Clear both motor counters.
Loop: check left position
Power left motor at 75%.
If: slower

right motor at 100%
Else: faster

right motor at 50%
3. Stop motors.
4. End the program.

Pseudocode

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

#include <kipr/wombat.h>

int main()
{

cmpc(3);
cmpc(0);
while (gmpc(3) < 14000)
{

motor(3, 75);
if(gmpc(0) < gmpc(3))
{

motor(3, 100);
}
else
{

motor(3, 50);
}

}
ao();
return 0;

}

Source Code

Drive Straight!

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Description: Write a program that turns left 90 degrees and then turns right
90 degrees using motor position counter.

Hint: Remember how we manually moved our robots to find the correct position, and
that inertia needs to be accounted for…

Pseudocode
1. Turn left 90 degrees.
2. Stop
3. Turn right 90 degrees.
4. Stop at same orientation as start.

Start “small” (try to accomplish the first turn before adding in / working on the second one)

Precision Turning

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Turning Left 90 Degree with MPC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>
void L90 ();
int main()
{

L90(); //L90 is a left 90 degree turn

 motor (0,0);
motor (3,0);
msleep (500);

return 0;
}
void L90 ()
{
 cmpc(0);
 while (gmpc(0) < 1090)
 {
 motor (0,50);
 motor (3,-50);

 }

Source Code

the 1090 is the number of tics
for your robot to complete a
90 degree turn. Your number

may be different

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Turning Right 90 Degree with
MPC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>
void R90 ();
int main()
{

R90(); //R90 is a left 90 degree turn

 motor (0,0);
motor (3,0);
msleep (500);

return 0;
}
void R90 ()
{
 cmpc(3);
 while (gmpc(3) < 1090)
 {
 motor (0,-50);
 motor (3,50);

 }

Source Code

the 1090 is the number of tics
for your robot to complete a
90 degree turn. Your number

may be different

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Turning Any Degree with MPC

This Allows you to make your
left turn at any degree with
whatever motor power you

decide

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>
void LTurn (int Lpower, int Rpower, float degrees);
int main()
{

LTurn(50,50,90);

 motor (0,0);
motor (3,0);
msleep (500);

return 0;
}
void LTurn (int Lpower, int Rpower, float degrees)
{
 cmpc(0);
 while (gmpc(0) < (degrees * 12.11)
 {
 motor (0,Lpower);
 motor (3,- Rpower);

 }

Source Code

In previous activities we came
up with 1090 ticks for a 90

degree turn. (1090*4)/360 =
12.11 tics per degree. We then
multiply this by the number of
desired degrees put into the
LTurn function call. This is a

Float data type because 12.11 *
Degrees with be a decimal

(float)

