
Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Motors - Basic Driving
and Turning

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Slide

3

4

5-6

7

8

9

10

Topic

Check the Robot’s Motor Ports

Wombat Motor Ports

Plugging in Motors

Motor Direction

Motor Port and Direction Check

Use the Motor Widget

Common Motor Functions

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Slide

11-13

14

15

16

17-19

20-24

25

Topic

Moving the DemoBot

Robot Driving Hints

More Motor Functions

Other Motor Functions

Move at Velocity

Using Mecanum Wheels

Moving Lateral/Sideways and Diagonal Movement

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• To program your robot to move, you need to
know which motor ports your motors are
plugged into.

• Computer scientists tend to start counting at 0, so
the four motor ports are numbered 0, 1, 2, and
3.

Check the Robot’s Motor Ports

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

0 1 2 3

Motor Port Labels are
on the Case
Motor Port Labels 0, 2
are also on the board

0 1 2 3

Wombat Motor Ports

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Motors have red wire and a black wire with a two-prong plug.
• The Wombat has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.
• When a port is powered (receiving motor commands), it has a light that

glows
green for one direction and red for the other direction.
• Plug orientation order determines motor direction.
• By convention, green is forward (+) and red is reverse (−)

• Unless you plug in the motors “backwards”.

Drive motors have a
two-prong plug.

Plugging in Motors

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Motor Plugged into Port 0 (right wheel on DemoBot)

Plugged in Motor

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

You want your motors going in the same
direction; otherwise, your robot will go in circles!
• Motors have a red wire and a black wire with a

two-prong plug.
• You can plug these in two different ways:

• One direction is clockwise, and the other direction is
counterclockwise.

• The red and black wires help determine motor direction.

1 2 2 1

Motor Direction

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Use this trick to check the port #’s and direction of your motors.

• If one is red and the other is green,
turn one motor plug 180° and plug it back in.

• The lights should both be green if the robot is moving forward.

There is an easy way to check this!
• Manually rotate the tire, and you will see an LED light up below the motor port

(the port # is labeled on the board).
• If the LED is green, it is going forward (+).
• If the LED is red, it is going reverse (−).

forward backward

Motor Port and Direction Check

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

1. Select “Motors and Sensors”
2. Select “Motors”

Use the Motor Widget

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

There are several functions for
motors.

We will begin with motor()

motor(0, 100);
// Turns on motor port #0 at 100% power.
// Power should be between -100% and
100%.

msleep(# milliseconds);
// Wait for the specified amount of
time.

ao();
// Turn off all of the
motors.

Motor port #
(between 0 and 3)

A positive number should
drive the motor forward; if
not, rotate the motor plug

180°.

A negative number
should drive the motor

reverse.

If two drive motors are
plugged in in opposite

directions from each other,
then the robot will go in a

circle.

Common Motor Functions

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Description: Write a program that drives the DemoBot
forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed
to do?

Pseudocode Comments
1. Drive forward at 80%. // 1. Drive forward at 80%.

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Stop motors.// 3. Stop motors.

4. End the program. // 4. End the program.

Drive forward at 80%.

Wait for 2 seconds.

Stop motors.

Flowchart
Begin

Moving the DemoBot

Return 0.

End

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

• Note: remember to give your project and file descriptive, unique names!

Execution: Compile and run
your program.

1. Drive forward at 80%.
2. Wait for 2 seconds.
3. Stop motors.
4. End the program.

Pseudocode (Comments)
#include <kipr/wombat.h>

int main()
{

motor(0, 80);
motor(3, 80);
msleep(2000);

ao();

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

//forward

Source Code

Moving the DemoBot

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Reflection: What did you notice after you ran the program?

• Did the DemoBot move forward?

• Positive (+) numbers should move the motors in a clockwise
direction (forward); if not, rotate the motor plug 180° where it
plugs into the Wombat.

• If your robot moves in a circle, one motor is either not moving (is it
plugged in?) or they are moving in opposite directions (rotate the
motor plug 180°).

• Did the DemoBot drive straight?

• How could you adjust the code to make the robot drive straight?

• How can you make the robot drive backwards?

• How can you make the robot turn left or right?

Moving the DemoBot

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Problem: Motors are not exactly the same.
• Problem: One tire has more resistance.
• Problem: The tires might not be aligned perfectly.

Driving straight: it is surprisingly difficult to drive in a straight line…

Making turns:
• Solution: Have one wheel go faster or slower than the other.
• Solution: Have one wheel move while the other one is stopped.

• Solution: Have one wheel move forward and the other wheel move in reverse
(friction is less of a factor when both wheels are moving).

And many,
many other
reasons…

Remember your # line: positive numbers (+) go forward and
negative numbers (−) go in reverse.

• Solution: You can adjust this by slowing down or speeding up the motors.

Robot Driving Hints

Reverse Forward

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

motor(0, 100);
// Turns on motor port #0 at 100% power.

• Is great for turning gears or winding up string on a pulley.
• Is not so great for driving robots as it is dependent on battery charge.

mav(0, 800);
// Move motor on port #0 at 800 ticks/sec.

• Is great for driving robots and not as dependent on battery charge.
• Greater precision of motor control (think of this as being like cruise control in a car).
• Must use wait_for_milliseconds function correctly.

mrp(0, 800, 3000);
// Move motor on port #0 forward 3000 ticks at 800 ticks/sec.

• Provides the most precise level of motor control.
• Most complicated to use (must do a lot of calculations to move correctly).

More Motor Functions

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Move At
Velocity:

mav(0, 1000);

Move Relative
Position:

mrp(0, 1000, 3000);

Motor Port #
(between 0 and
3)

Velocity (in ticks per
second) between -1000

(reverse)
and 1000 (forward)

Motor Position (in ticks);
~1000 ticks = 1 tire

revolution

Other Motor Functions

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Description: Write a program that drives the DemoBot
forward at 1000 ticks per second for 3 seconds, then in
reverse at 1000 ticks per second for 3 second, then stops.

Analysis: What is the program supposed to do?

Pseudocode
// 1. Drive forward at 1000 ticks/sec.
// 2. Wait for 3 seconds.
// 3. Drive reverse at 1000 ticks/sec.
// 4. Wait for 3 seconds.
// 5. Stop motors.
// 6. End the program.

1. Drive forward at 1000 ticks/sec.
2. Wait for 3 seconds.
3. Drive reverse at 1000 ticks/sec.
4. Wait for 3 seconds.
5. Stop motors.
6. End the program.

Move at Velocity

Comments

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Analysis: Flowchart

Move at Velocity

Drive forward at 1000 ticks/sec.

Wait for 3 seconds.

Drive reverse at 1000 ticks/sec.

Wait for 3 seconds.

Stop motors.

Return 0

STOP

START

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution:

Execution: Compile and run your
program on the Wombat.

int main()
{

// 1. Drive forward at 1000 ticks/sec.
// 2. Wait for 3 seconds.
//
//
3. Drive reverse at 1000
4. Wait for 3 seconds.

ticks/sec.

// 5. Stop motors.
// 6. End the program.

}

Pseudocode (Comments)

Move at Velocity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>

int main()
{

// 1. Drive forward at 1000
 ticks/sec

mav(0, 1000);
mav(3, 1000);
// 2. Wait for 3 seconds.
msleep(3000);
// 3. Drive reverse at 1000

 tics/sec
mav(0, -1000);
mav(3, -1000);
// 4. Wait for 3 seconds.
msleep(3000);
// 5. Stop motors.
ao();
// 6. End the program.
return 0;

}

Source Code

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Now you have 4
motors/wheels to control

• The same motor functions
work

#include <kipr/wombat.h>

int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(0,100);
motor(1,100);
motor(2,100);
motor(3,100);
msleep(3000); // Forward

ao();
msleep(500); // Pause
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Source Code

Using Mecanum Wheels

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Using Variables to keep
track of motors will be

helpful

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front
wheel

int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
printf(“MecanumWheels\n”);
motor(RF,100);
motor(RR,100);
motor(LF,100);
motor(LR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(RF,-100);
motor(RR,-100);
motor(LF,-100);
motor(LR,-100);
msleep(3000); // Drive Backwards
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Source Code

Using Mecanum Wheels

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Placing your motor
commands in a square
like the robot may

 also help you keep
track of your wheels

motor(LF,100); motor(RF,100);
motor(LR,100); motor(RR,100);

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front
wheel

int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel

printf(“MecanumWheels\n”);

motor(LF,100);motor(RF,100);
motor(LR,100);motor(RR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(LF,-100);motor(RF,-100);
motor(LR,-100);motor(RR,-100);
msleep(3000); // Drive Backwards

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

RobotLF
LR RR

RF

Source Code

Using Mecanum Wheels

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

● Now you have 4
motors/wheels to
control

● Forward, Backward,
Radius/Arc, and Pivot
Turns are the same
as with two wheels

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel

printf(“MecanumWheels\n”);

motor(LF,100);motor(RF,100);
motor(LR,100);motor(RR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(LF,100);motor(RF,-100);
motor(LR,100);motor(RR,-100);
msleep(500); // Right Turn

ao();
msleep(500); // Pause

motor(LF,-100);motor(RF,100);
motor(LR,-100);motor(RR,100);
msleep(3000); // Left Turn

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Source Code

Using Mecanum Wheels

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

#include <kipr/wombat.h>
void L90(); // L90 is left 90 degree turn
void R90(); // R90 is right 90 degree turn
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

R90();

ao();
msleep(500); // Pause

L90();

ao();
msleep(500); // Pause
return 0;

}
void L90()
{

motor(LF,-100);motor(RF,100);
motor(LR,-100);motor(RR,100);
msleep(1000);

}
void R90()
{

motor(LF,100);motor(RF,-100);
motor(LR,100);motor(RR,-100);
msleep(1000);

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Write Functions for
Your Turns

Source Code

Using Mecanum Wheels

Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <kipr/wombat.h>
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(LF,50);motor(RF,-50); // Sideways Right
motor(LR,-50);motor(RR,50);
msleep(3000);

ao();
msleep(500); // Pause

motor(LF,-50);motor(RF,50); // Sideways Left
motor(LR,50);motor(RR,-50);
msleep(8000);

ao();
msleep(500); // Pause

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <kipr/wombat.h>
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(LF,0);motor(RF,-50); // 45 Right
motor(LR,-50);motor(RR,0);
msleep(3000);

ao();
msleep(500); // Pause

motor(LF,-50);motor(RF,0); // 45 Left
motor(LR,0);motor(RR,-50);
msleep(8000);

ao();
msleep(500); // Pause

return 0;
}

Source CodeSource Code

Moving Lateral / Sideways and
Diagonal Movement

