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• To program your robot to move, you need to 
know which motor ports your motors are 
plugged into.

• Computer scientists tend to start counting at 0, so 
the four motor ports are numbered 0, 1, 2, and 
3.

Check the Robot’s Motor Ports
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0 1 2 3

Motor Port Labels are 
on the Case
Motor Port Labels 0, 2 
are also on the board

0 1     2 3

Wombat Motor Ports
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• Motors have red wire and a black wire with a two-prong plug.
• The Wombat has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.
• When a port is powered (receiving motor commands), it has a light that 

glows
green for one direction and red for the other direction.
• Plug orientation order determines motor direction.
• By convention, green is forward (+) and red is reverse (−)

• Unless you plug in the motors “backwards”.

Drive motors have a 
two-prong plug.

Plugging in Motors
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Motor Plugged into Port 0 (right wheel on DemoBot)

Plugged in Motor
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You want your motors going in the same 
direction; otherwise, your robot will go in circles!
• Motors have a red wire and a black wire with a 

two-prong plug.
• You can plug these in two different ways:

• One direction is clockwise, and the other direction is 
counterclockwise.

• The red and black wires help determine motor direction.

1 2 2 1

Motor Direction
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• Use this trick to check the port #’s and direction of your motors.

• If one is red and the other is green,
turn one motor plug 180° and plug it back in.

• The lights should both be green if the robot is moving forward.

There is an easy way to check this!
• Manually rotate the tire, and you will see an LED light up below the motor port 

(the port # is labeled on the board).
• If the LED is green, it is going forward (+).
• If the LED is red, it is going reverse (−).

forward backward

Motor Port and Direction Check
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1. Select “Motors and Sensors”
2. Select “Motors”

Use the Motor Widget
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There are several functions for 
motors.

We will begin with motor()

motor(0, 100);
// Turns on motor port #0 at 100% power.
// Power should be between -100% and 
100%.

msleep(# milliseconds);
// Wait for the specified amount of 
time.

ao();
// Turn off all of the 
motors.

Motor port #
(between 0 and 3)

A positive number should 
drive the motor forward; if 
not, rotate the motor plug 

180°.

A negative number 
should drive the motor 

reverse.

If two drive motors are 
plugged in in opposite 

directions from each other, 
then the robot will go in a 

circle.

Common Motor Functions
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Description: Write a program that drives the DemoBot 
forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed 
to do?

Pseudocode Comments
1. Drive forward at 80%. // 1. Drive forward at 80%.

2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Stop motors.// 3. Stop motors.

4. End the program. // 4. End the program.

Drive forward at 80%.

Wait for 2 seconds.

Stop motors. 

Flowchart
Begin

Moving the DemoBot

Return 0.

End
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Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

• Note: remember to give your project and file descriptive, unique names!

Execution: Compile and run 
your program.

1. Drive forward at 80%.
2. Wait for 2 seconds.
3. Stop motors.
4. End the program.

Pseudocode (Comments)
#include <kipr/wombat.h>

int main()
{

motor(0, 80);
motor(3, 80);
msleep(2000);

ao();

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

//forward

Source Code

Moving the DemoBot
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Reflection: What did you notice after you ran the program?

• Did the DemoBot move forward?

• Positive (+) numbers should move the motors in a clockwise 
direction (forward); if not, rotate the motor plug 180° where it 
plugs into the Wombat.

• If your robot moves in a circle, one motor is either not moving (is it 
plugged in?) or they are moving in opposite directions (rotate the 
motor plug 180°).

• Did the DemoBot drive straight?

• How could you adjust the code to make the robot drive straight?

• How can you make the robot drive backwards?

• How can you make the robot turn left or right?

Moving the DemoBot
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• Problem: Motors are not exactly the same.
• Problem: One tire has more resistance.
• Problem: The tires might not be aligned perfectly.

Driving straight: it is surprisingly difficult to drive in a straight line…

Making turns:
• Solution: Have one wheel go faster or slower than the other.
• Solution: Have one wheel move while the other one is stopped.

• Solution: Have one wheel move forward and the other wheel move in reverse 
(friction is less of a factor when both wheels are moving).

And many, 
many other 
reasons…

Remember your # line: positive numbers (+) go forward and 
negative numbers (−) go in reverse.

• Solution: You can adjust this by slowing down or speeding up the motors.

Robot Driving Hints

Reverse Forward
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motor(0, 100);
// Turns on motor port #0 at 100% power.

• Is great for turning gears or winding up string on a pulley.
• Is not so great for driving robots as it is dependent on battery charge.

mav(0, 800);
// Move motor on port #0 at 800 ticks/sec.

• Is great for driving robots and not as dependent on battery charge.
• Greater precision of motor control (think of this as being like cruise control in a car).
• Must use wait_for_milliseconds function correctly.

mrp(0, 800, 3000);
// Move motor on port #0 forward 3000 ticks at 800 ticks/sec.

• Provides the most precise level of motor control.
• Most complicated to use (must do a lot of calculations to move correctly).

More Motor Functions
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Move At 
Velocity:

mav(0, 1000);

Move Relative 
Position:

mrp(0, 1000, 3000);

Motor Port # 
(between 0 and 
3)

Velocity (in ticks per 
second) between -1000 

(reverse)
and 1000 (forward)

Motor Position (in ticks);
~1000 ticks = 1 tire 

revolution

Other Motor Functions
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Description: Write a program that drives the DemoBot 
forward at 1000 ticks per second for 3 seconds, then in 
reverse at 1000 ticks per second for 3 second, then stops.

Analysis: What is the program supposed to do?

Pseudocode
// 1. Drive forward at 1000 ticks/sec.
// 2. Wait for 3 seconds.
// 3. Drive reverse at 1000 ticks/sec.
// 4. Wait for 3 seconds.
// 5. Stop motors.
// 6. End the program.

1. Drive forward at 1000 ticks/sec.
2. Wait for 3 seconds.
3. Drive reverse at 1000 ticks/sec.
4. Wait for 3 seconds.
5. Stop motors.
6. End the program.

Move at Velocity

Comments
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Analysis: Flowchart

Move at Velocity

Drive forward at 1000 ticks/sec.

Wait for 3 seconds.

Drive reverse at 1000 ticks/sec.

Wait for 3 seconds.

Stop motors.

Return 0

STOP

START
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Solution:

Execution: Compile and run your 
program on the Wombat.

int main()
{

// 1. Drive forward at 1000 ticks/sec.
// 2. Wait for 3 seconds.
//
//
3. Drive reverse at 1000
4. Wait for 3 seconds.

ticks/sec.

// 5. Stop motors.
// 6. End the program.

}

Pseudocode (Comments)

Move at Velocity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

#include <kipr/wombat.h>

int main()
{

// 1. Drive forward at 1000 
  ticks/sec

mav(0, 1000);
mav(3, 1000);
// 2. Wait for 3 seconds.
msleep(3000);
// 3. Drive reverse at 1000  

  tics/sec
mav(0, -1000);
mav(3, -1000);
// 4. Wait for 3 seconds.
msleep(3000);
// 5. Stop motors.
ao();
// 6. End the program.
return 0;

}

Source Code
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• Now you have 4 
motors/wheels to control

• The same motor functions 
work

#include <kipr/wombat.h>

int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(0,100);
motor(1,100);
motor(2,100);
motor(3,100);
msleep(3000); // Forward

ao();
msleep(500); // Pause
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Source Code

Using Mecanum Wheels
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Using Variables to keep 
track of motors will be 

helpful

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front 
wheel

int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
printf(“MecanumWheels\n”);
motor(RF,100);
motor(RR,100);
motor(LF,100);
motor(LR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(RF,-100);
motor(RR,-100);
motor(LF,-100);
motor(LR,-100);
msleep(3000); // Drive Backwards
return 0;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Source Code

Using Mecanum Wheels



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Placing your motor 
commands in a square 
like the robot may

     also help you keep   
track of your wheels

motor(LF,100); motor(RF,100);
motor(LR,100); motor(RR,100);

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front 
wheel

int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel

printf(“MecanumWheels\n”);

motor(LF,100);motor(RF,100);
motor(LR,100);motor(RR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(LF,-100);motor(RF,-100);
motor(LR,-100);motor(RR,-100);
msleep(3000); // Drive Backwards

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

RobotLF
LR RR

RF

Source Code

Using Mecanum Wheels
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● Now you have 4 
motors/wheels to 
control

● Forward, Backward, 
Radius/Arc, and Pivot 
Turns are the same 
as with two wheels

#include <kipr/wombat.h>

int main()
{

int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel

printf(“MecanumWheels\n”);

motor(LF,100);motor(RF,100);
motor(LR,100);motor(RR,100);
msleep(3000); // Drive Forward

ao();
msleep(500); // Pause

motor(LF,100);motor(RF,-100);
motor(LR,100);motor(RR,-100);
msleep(500); // Right Turn

ao();
msleep(500); // Pause

motor(LF,-100);motor(RF,100);
motor(LR,-100);motor(RR,100);
msleep(3000); // Left Turn

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Source Code

Using Mecanum Wheels
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#include <kipr/wombat.h>
void L90(); // L90 is left 90 degree turn
void R90(); // R90 is right 90 degree turn
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

R90();

ao();
msleep(500); // Pause

L90();

ao();
msleep(500); // Pause
return 0;

}
void L90()
{

motor(LF,-100);motor(RF,100);
motor(LR,-100);motor(RR,100);
msleep(1000);

}
void R90()
{

motor(LF,100);motor(RF,-100);
motor(LR,100);motor(RR,-100);
msleep(1000); 

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Write Functions for 
Your Turns

Source Code

Using Mecanum Wheels
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <kipr/wombat.h>
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(LF,50);motor(RF,-50); // Sideways Right
motor(LR,-50);motor(RR,50);
msleep(3000);

ao();
msleep(500); // Pause

motor(LF,-50);motor(RF,50); // Sideways Left
motor(LR,50);motor(RR,-50);
msleep(8000); 

ao();
msleep(500); // Pause

return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

#include <kipr/wombat.h>
int RF = 0; // RF is right front wheel
int RR = 1; // RR is right rear wheel
int LF = 2; // LF is left front wheel
int LR = 3; // LR is left rear wheel
int main()
{

printf(“MecanumWheelsFunctions\n”);

motor(LF,0);motor(RF,-50); // 45 Right
motor(LR,-50);motor(RR,0);
msleep(3000);

ao();
msleep(500); // Pause

motor(LF,-50);motor(RF,0); // 45 Left
motor(LR,0);motor(RR,-50);
msleep(8000); 

ao();
msleep(500); // Pause

return 0;
}

Source CodeSource Code

Moving Lateral / Sideways and 
Diagonal Movement


