
Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

First Programs - Explaining 
the  “Hello, World!” 

C Program



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Slide

3

4

5

6

7

8

9

10

11

First Programs - Explaining the 
“Hello, World!” C Program

Topic

“Hello, World!”

Program Flow and Line Numbers

Source Code

The main Function

Block of Code

Programming Statements

KIPR Functions Reference Sheet

Ending a Programming Statement

Ending the main Function



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Slide

12

13

14

15

16

17-19

20-22

23-24

First Programs - Explaining the 
“Hello, World!” C Program

Topic

Comments

Text Color Highlighting

Print Your Name

Designing Your Own Program

Complex Tasks → Simple Subtasks

Practice Printing

Waiting for Some Time

Debugging Errors



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Note: We will use this 
template every time; 

we will delete lines we 
don’t want, and we will 

add lines that we do 
want.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

“Hello, World!”

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Print "Hello, World!"

Top

Computers read a program just like you read a book—
they read each line starting at the top and go to the bottom.

Computers can read incredibly quickly—
Millions of lines per second!

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8Bottom

Return 0

End

Begin

Program Flow and Line Numbers

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

This is the source code for our first C program.

Let’s look at each part of the source code.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Source Code

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

This is the main() 
function.

When you run your program, the 
main function is executed.
A C program must have exactly 
one main() function.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

A function defines a list of actions to take. A function is like a 
recipe for baking a cake. When you call (use) the function,
the program follows the instructions and bakes the cake.

The Main Function

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

The list of actions that the function performs is defined inside a
block of code.

This is a block of 
code.
A block of code 
should always be 
preceded by a block 
header

A block is defined between 
a beginning curly brace { 
and an ending curly brace 
}

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Begin

End

Block Header

Block of Code

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Inside the block of code 
(between the { and } 
braces), we write lines of 
code called 
programming 
statements.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Statement #1
Statement #2

Each programming statement is an action to be 
executed by the computer (or robot) in the order that it is 
listed.

There can be any number of programming statements 
within a block of code.

Programming Statements

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Until you are familiar with the functions that you will be 
using, use this function reference sheet as an easy 

reference.
Copying and pasting your own code is also very helpful.

KIPR Functions Reference Sheet



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Each programming 
statement ends with a 
semicolon ; (unless it is 
followed by a new block of 
code).

This is similar to an English sentence, which ends with a 
period.

If an English sentence is missing a period, then it is a run-on 
sentence.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Ending a Programming Statement

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

The main function ends 
with a return statement, 
which is a response or 
answer to the computer (or 
robot).
In this case, the “answer” 
back to the computer is 0.

The return statement is 
generally the last line 
before the } brace.

Ending the Main Function

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Text beginning with “//” is called a comment.

Comments are helpful 
notes that can be read by 
you or your team—they 
are ignored (not read) by 
the computer!

// This is my main function
#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Comments

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

The KISS IDE highlights parts of a program to make it easier 
to read. (By default, the KISS IDE colors your code and adds 
line numbers.)

• Comments appear in green

• Includes appear in purple

• Text strings appear in red

• Keywords appear in blue

// This is my main function
#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”);
return 0;

}

1
2
3
4
5
6
7
8

Text Color Highlighting

Source Code



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Description: Write a program for the KIPR Wombat that prints your 
name.

Solution:
Flowchart

#include <kipr/wombat.h>

int main()
{

// 1. Print your name.
printf(“Botguy\n”);

// 2. End the program.
return 0;

}

1
2
3
4
5
6
7
8
9
10

Print your name

Return 0

STOP

START

Source Code

Print Your Name



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Breaking Down a Task 
Pseudocode, Flowcharts, and 

Comments
msleep() Function 

Debugging Your Program

Designing Your Own Program



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

• Break down the objectives (complex tasks) into smaller 
objectives (simple subtasks).

• Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be 
accomplished by a list of individual programming 
statements.

• For example, the larger task might be to make a PB&J 
Sandwich which has smaller tasks of getting the bread and 
PB&J ready and then combining them.

Complex Tasks — Simple Subtasks



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Print “Hello, World!”

Print your name

End

Return 0

Description: Write a program that prints "Hello, World!” on one 
line, and then prints your name on the next line.
Analysis: What is the program supposed to do?

Flowchart

In English, write a 
list of actions to 
solve an activity.

Pseudocode
1. Print “Hello, World!”
2. Print your name.
3. End the program.

Comments
// 1. Print "Hello, World!"
// 2. Print your name.
// 3. End the program.

There are three 
different ways to do 
this.

Practice Printing

Begin



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution: Create a new project, create a new file, and enter 
your pseudocode and source code in the main function.

• Note: remember to give your project and file descriptive (unique) 
names!

Execution: Compile and run your program on the KIPR Wombat.

1. Print "Hello, World!"
2. Print your name.
3. End the program.

Pseudocode
Helps you 

write
the real code!

1
2
3
4
5
6
7
8
9
10

#include <kipr/wombat.h>

int main()
{

printf(“Hello, World!\n”);
printf(“Botguy\n”);
return 0;

}

Source Code

Practice Printing



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Reflection: What did you notice after you ran the program?

• The KIPR Robotics Controller reads code and [generally] goes to the 
next line faster than a blink of your eye.

• The KIPR Robotics Controller is executing thousands of lines of 
code per second!

• To control a robot, sometimes it is helpful to wait for some duration 
of time after a function has been called so that it can actually perform 
the task.

• To do this, we use the built-in function called msleep()

Let’s use this!

Practice Printing



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Analysis: What is the program supposed 
to do?
PseudocodeComments
1. Print “Hello, Botguy!” // 1. Print "Hello, Botguy!"
2. Wait for 2 seconds. // 2. Wait for 2 seconds.

3. Print “Good 
bye”.

4. End the 
program.

// 3. Print "Good bye."

// 4. End the program.

Begin

Print “Hello, Botguy!”

   Wait for 2 seconds.

Print Good bye.

End

Return 0

Description: Write a program that prints "Hello, [your name]!" 
on one line, waits two seconds, and then prints "Good bye." on 
the next line.

Flowchart

New!

Waiting for Some Time



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Solution: Create a new project, create a new file, and enter your 
pseudocode and source code in the main function.

• Note: remember to give your project and file descriptive (unique) names!

Execution: Compile and run your program.

1. Print "Hello, Botguy!"
2. Wait for 2 seconds.
3. Print “Good bye”.
4. End the program.

Pseudocode
1
2
3
4
5
6
7
8
9
10
11

#include <kipr/wombat.h>

int main()
{

printf(“Hello, Botguy!\n”);
msleep(2000);

printf(“Good bye.\n”);

return 0;
}

Source Code

Waiting for Some Time



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

Reflection: What did you notice after you ran the 
program?

• Did your code work the first time you typed it in?

• Did you have any errors?

Waiting for Some Time



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

!!! ERROR !!!

• If you do not follow the rules of the programming language, 
then the compiler will get confused and not be able to translate 
your source code into machine code—it will say “Compile 
Failed!”

• The Wombat will try to tell you where it thinks the error is located.
• The process of trying to resolve this error is called “debugging”.
• To test this, remove a ; from one of your programs and compile 

it.
• How about if you remove a " from one of your printf statements?

• What if you type msleep()as Msleep()?

Debugging Errors



Professional Development Workshop
KISS Institute for Practical Robotics © 1993 – 2025 KIPR

“ expected ; ” 
(semicolon)

If you have a lot of errors, start fixing them 
from the top going down. Fix one or two 
and recompile.

#include <kipr/wombat.h>

int main()
{

printf(“Hello World\n”)
return 0;

}

1
2
3
4
5
6
7
8

Compilation Failed

/home/kipr/Documents/KISS/Botguy/debugging/src/main.c: In function ‘main’:
/home/kipr/Documents/KISS/Botguy/debugging/src/main.c:5:28: error: expected ‘;’ before ‘return’

Compilation Failed

line # : col # 
on or before(the error is line 5)

Source Code

Debugging Errors


