

Botball

Analog Sensors -Rangefinders

Slide Topic

- 3 Learning About Analog Sensors
- 4 Range Sensor Mounted on Robot
- 5 Plug In Your Range Sensor
- 6 Check ET Sensor on Wombat Screen
- 7 ET (Wall-E) Sensor Information
- 8 ET Sensor Values
- 9 <u>ET Sensor Focal Point Problem</u>
- 10 Learning to Use an ET Analog Sensor
- 11-12Find the Wall
- 13 ET- Find the Wall and Back Up

- Returns the analog value of the port (a value in the range 0 to 4095). Analog ports are numbered 0 through 5.
- Light, slide, range and reflectance sensors are examples of sensors you would use in analog ports.

Range Sensor Mounted on Robot

Botball

Plug in your Range Sensor

Close-up of sensor plug orientation

Range Sensor

Check ET Sensor on Wombat Screen

Sensor Ports

Botball

Read the values when your ET sensor is pointed at an object and slowly move it toward/away from the object (this is a distance sensor)

Sensor Values

ET (Wall-E) Sensor Information

Botball

- Low values: indicate greater distance (farther from robot)
- **High values:** indicate shorter distance (closer to robot)
- Optimal range is ~4" and further away
- 0" to 3.5" values are not optimal
- Objects closer than the focal point (~4") will have the same readings as those further away.

. Home	Back	•) Home	•	Back	•
Analog Sensor 0 Analog Sensor 1 Analog Sensor 2 Analog Sensor 3 Analog Sensor 3 Analog Sensor 4 Analog Sensor 5 Digital Sensor 0 Digital Sensor 1 Digital Sensor 2 Digital Sensor 3 Digital Sensor 4 Digital Sensor 5 Digital Sensor 7 Digital Sensor 7 Digital Sensor 9 Accelerometer X	951 1104 1123 1038 1084 Value 00 00 00 00 00 00 00 00 00 0	Life	Analog Sensor 0 Analog Sensor 1 Analog Sensor 2 Analog Sensor 3 Analog Sensor 3 Analog Sensor 4 Analog Sensor 5 Digital Sensor 0 Digital Sensor 1 Digital Sensor 2 Digital Sensor 3 Digital Sensor 3 Digital Sensor 5 Digital Sensor 6 Digital Sensor 7 Digital Sensor 8 Digital Sensor 9 Accelerometer X	23166 11123 11123 11066 00 00 00 00 00 00 00 00 00 00 00 00	Larger Value	

ET Sensor Values

Botball

You may need to adjust the value chosen, up or down a little, for your desired distance from an object. Optimal distance is about 4" away from the sensor.

Botball

- 1. Extend your arm in front of you with your thumb pointed up.
- 2. Focus on your thumb and then slowly bring your thumb toward your face.
- 3. What happens when your thumb gets close to your face?
- 4. Did it get blurry? Yes! It got within the focal point of your eyes (where you could focus on it and make it clear)
- 5. The ET sensor also has a focal point and if the object is too close the sensor cannot tell if it is close or far away.
- 6. When attaching your ET sensor to your robot, consider the ~4" distance from your sensor to its focal point.

Learning to Use an ET Analog Sensor

Botball

Find the Wall

KISS Institut Practica Robotics

- 1. Open a new project, name it "Find the Wall".
- 2. Write and compile a program that will find the wall and stop.

Pseudocode (Task Analysis)

- 1. Print Find the Wall and Stop
- Check the sensor value in analog port 1. Is the value <= 2700?
- Drive forward as long as the value is <= 2700 (or your determined value)
- 4. Exit loop when value is 2700(or your determined value) or greater
- 5. Shut everything off

While "find the wall" Solution

Source Code

```
#include <kipr/wombat.h>
 1
 2
   int main()
 3
   {
 4
        printf("Find the wall\n");
 5
        while (analog(0) \le 2700)
 6
 7
        {
            motor(0, 40);
 8
            motor(3, 40);
 9
10
        }
11
        ao();
12
13
        return 0;
14 }
15
```

ET - Find the Wall and Back Up

KISS Institute Practica Robotics

Pseudocode (Task Analysis)

- 1. Print Find the Wall and Back Up
- 2. Check the sensor value in analog 1. Is the port value <= 2700?
- 3. Drive forward as long as the value is <= 2700 (or your determined value)
- 4. Exit loop when value is 2700(or your determined value) or greater
- 5. Back up for 3 seconds
- 6. Shut everything off

This is an example of taking a shorter program and building/expanding upon it to accomplish more.

