
Algorithmically Optimize Botball Competition Strategies 
Yimo Xu 
ITCCC - Scuderia Canotage Wanderers 

Algorithmically Optimize Botball Competition 

Strategies 

Abstract: This paper focus on finding and optimizing competition strategies in Botball 
tournaments by mathematically modeling the competition playground and tasks as well as 
adopting algorithms in computer science and statistics. 

Keywords: Botball, Algorithm, Statistics, Strategy 

1 Introduction 

Determining a strategy in Botball Competition can be a complicated task, as a large variety of 
factors are to be considered, including time cost, score estimation and rate of success 
(robustness). As an alternative to imagining a perfect plan, computer programs can be 
employed to find the best solutions more scientifically, after the whole playground is modeled 
in a proper manner. 

2 Modeling 

The whole playground can be modeled as a graph for analysis. Since robots can move freely 
in designated areas, the graph should be cyclic. However, some tasks have prerequisites. For 
example, the frisbee will score higher only if it’s in the right block with yellow sponge block, 
so the graph will be directed. 

2.1 Features of the Graph 

Theoretically, the graph will have n nodes1, indicating n tasks2 or waypoints (a point 
which the robot will pass by while no task may be done here). Among these nodes, there are 
m edges connecting these notes[1]. We name all graphs that are modeled from Botball 
Competition playground “Botball Graph”, and in recent years, it should contain two identical 
directed cyclic subgraphs connected with two reversed edges between two identical nodes. 

                                                   
1

  Also referred as “Vertices” in Graph Theory 
2

  Performing one task in different situations, e.g. carrying different numbers of poms, will be considered as  
performing different tasks if the score varies. 



Please refer to Appendix 0 to see a small portion of this year’s graph and its explanation. 

2.2 Other definitions and inferences 

2.2.1 Features of Nodes 

We define, for every Botball Graph: 
 

1. There is a weight, W$,&, for every edge connecting node i and j indicating the time that 

will cost to travel between these two nodes. 
2. There is also a weight, T$, for every node i, indicating the time that will cost to finish the 

task in node i. 
3. There is an income, M$, for every node i, indicating the mean value of points the team 

will earn after finishing the task in this node, and finally, 
4. There is a success rate P$, for every node i, indicating the rate of successfully finishing 

the task, assuming that success rates are distributed binomially. Do keep in mind that we 
will assume that the robot cannot perform any further tasks if it failed to do one task. 

Specially, we define that for all waypoint node i, T$ = 0,𝑀/ = 0, 𝑃/ = 1.00, and for all task 

node j, T&, 𝑀3 > 0 and 	0 < 𝑃/ < 1, initially.  

There exists one and only one starting node and it should be a waypoint node. The robot can 
stop at any node, including the starting node. 
A task node may be “used”, means that a task may be finished. A “used” task node will 
become a waypoint node. A task node that is not used when the robot is currently at also 
behaves the same as a waypoint node. 

2.2.2 Fail Rate of the Strategy 

As for the fail rate for a whole strategy S, we define it as the sum of all failing possibilities. 
Mathematically, it is defined as: 

P(S	Fail) = =𝑃(𝑖?@	𝑛𝑜𝑑𝑒	𝑓𝑎𝑖𝑙)
H

$IJ

 

Where: 

𝑃(𝑖?@	𝑛𝑜𝑑𝑒	𝑓𝑎𝑖𝑙) = (1 − P$)L𝑃M

/NJ

MIJ

 

And S is an ordered list such that: 
S =< i, j … , k > 

Where i, j, … , k are elements within the Botball Graph. 



2.2.3 Reasons why two nodes are unreachable 

Some nodes may only be reachable by some specific point due to the following reasons: 
1. Prerequisites. Some tasks need prerequisites to score the indicated M$, for example, the

frisbee must be put into the area with three yellow sponge blocks in order to score 200
points.

2. Angle. For example, the most optimized way to catch the frisbee is by going through the
position where the group of poms which are nearest to the starting area is.

3 Design of the algorithm 

3.1 Prototype 

Calculating what we need in a cyclic graph would be inefficient. The easiest main idea is 
using Depth-First-Search, as known as DFS. To make sure that the search does not end in a 
dead loop, we need to maintain a stack which pushes in the current node when we make any 
move. Afterwards, when the time reaches the limit (which is 120 seconds), or we find two 
identical nodes with all nodes between them are “used” nodes or waypoint nodes, which 
indicates that we entered a cycle that cannot let us gain any extra score3, current search will 
be terminated. 

Fig 3.1 Simple demonstration of the concept 
However, this method is so complex both in time and space, making it a less acceptable 
algorithm as we need to deal with a much complex graph, and the searching process requires 
too much redundant work. 

                                                   
3 This seems obvious, nevertheless, to understand it mathematically, please refer to [2] J. L. Gross and J. Yellen, 

"Graph Theory and Its Applications, Second Edition," Taylor & Francis, 2005, pp. 197-207.. 



3.2 Changing the approach 

Another approach may be used in the calculation as a more proper method to figure out a 
more realistic strategy. The program will do the following tasks: 
1. Find the optimal path (shortest path) from the starting node to all tasks going through

other task nodes.
The team will need to pick one end with reasonable incomes, relatively low but acceptable 
success rate (since it’s the last one), and reasonable time needed. Afterwards, the program 
will: 
2. Determine if there is any node within a cycle, and if tasks inside the cycle can be done,

then
3. Determine which tasks among the way can be done, then find the optimal strategy
The program will calculate the success rate of this strategy afterwards. If it is too easy to fail,
another strategy may be calculated by cancelling the node with lowest success rate.

3.3 Finding the shortest path 

Our graph is directed and with no edge with negative weight since no time can be added to 
the total competition time. Among all suitable algorithms4, Dijkstra’s algorithm is the fastest 
with determined complexity. Since our graph has no edge with negative weight, we don’t 
have to use an algorithm that is able to find cycles with negative weight5.  

3.3.1 Concept explanation 

Dijkstra’s algorithm can find the shortest path from one source to all nodes within graphs 
with no edge that has negative weight[4]. It’s time complexity, without optimization using 
Fibonacci heap6 is O(nR). 

In the algorithm, two sets will be maintained: S, which contains nodes that have already 
know what the shortest path to the source is and U, which contains nodes that haven’t. We 
continuously find the node with the shortest path to the source node in U, remove it and add 
it in S. Then, update all nodes in U the shortest distance from the source point to them using 
data in S until U is empty. 

                                                   
4 Which include Depth-First Brute-Force search, Dijkstra, Floyd-Warshall, Bellman-Ford, SPFA, etc. 
5 For further understanding, please refer to [3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction 
to Algorithms," MIT Press, 2009, pp. 615-623. 
6 It’s unnecessary to do so. Optimized complexity is O(E+ V log𝑉). 



 
Fig 3.2 Simple demonstration on how Dijkstra’s algorithm work 

3.3.2 Running result 

The shortest path with reasonable income is moving the black frisbee on the far side by going 
through all 6 groups of poms and the position that can move the trolley.  

3.4 Finding loops 

3.4.1 Concept Explanation 

We will use Depth-First Search to find all loop that starts from any node within the nodes in 
the strategy, which in this case is the fastest[5]. The main idea is similar to that discussed in 
3.1. The program will advance to all children of the current node until it reaches a 
non-starting which has been before or a node with an out-degree of 0 (which means it has no 
child nodes). If the program reaches the starting node or any node in the shortest-path node 
after the starting node, it will record this loop and terminate pop out the current stack.  
Afterwards, we will re-construct the cycle S =< NJ, NR, … ,NH > as a node N where: 

T[ ==T\]

^

/IJ

+=W\]\]_`

^NJ

/IJ

, M[ ==MHa

^

/IJ

, P[ = 1 − (=(1 − P[a)L𝑃\b

/NJ

MIJ

)
H

$IJ

 

N will have the same in-degree as T[J and the same out-degree as T[c . 

To simplify the calculation, nodes will be permutated according to decreasing order of P[, 
which means nodes with lower P[  will be in the back if there are multiple nodes 
reconstructed. 
This is reasonable since in such single-direction loop, tasks represented by latter nodes will 
depend on any node in front of it in topological order. 
See Appendix 1 for a detailed example with explanation.  



3.4.2 Running result 

Reasonable result includes catching all poms on the ground and putting them inside the 
trolley, putting Botguy inside the trolley, catching green frisbee and put it to the area where 3 
yellow sponge blocks reside (assuming another robot has already moved big blocks to the 
designated location) and putting 3 sets of palm seeds (orange poms) inside the PVC. 

3.5 Selecting tasks 

After two steps described above, we will have a DAG (directed acyclic graph) containing all 
possible tasks that can be performed. As a common sense, when solving problems involving 
expectations within a DAG, dynamic programming methods can be used[6].  

3.5.1 Concept Explanation 

The main idea of dynamic programming in this problem is a bit like 0-1 Knapsack problem. 
Assume we have a queue7 Q storing all nodes < NJ, NR, … ,NH >, where N is sorted in 
decreasing topological order8. 
Then, we define, for a task that needs to be finished in time C, the maximum expected value 
in node N is E[,e. Assume S[ is a set which contains all child of node N and K[ is any 
node such that K[ ∈ S[. We apply dynamic programming’s idea: 
We can either choose to execute the tasks in node N, and accept a score gain M[ with a 
time lost T[, or not, and proceed to any of its children, then do the same calculation. Since 
there’s no aftereffect now, indicating whether doing the previous task will have no effect on 
latter tasks’ optimal strategy, the optimal strategy of node N will include the optimal strategy 
of one of its children (or its only child). 
Bearing this in mind, this formula will come out: 

E[,e = max i𝐸kl,mNnl,ol
, 𝐸kl,mNnl,olNpl

+𝑀\q when C ≠ 0,K[ ≠ ∅ 

E[,e = 0	when	C = 0 or K[ = ∅, 𝐶 < 𝑇\ 
E[,e = M[ when K[ = ∅, 𝐶 ≥ 𝑇\ 

In the program, according to dependencies, we will calculate all E[,e  in increasing 

topological order. E[x,JRy will be our final answer. An additional list should be maintained 

to store current best strategy selection. 
Finally, fail rate is calculated. 

                                                   
7 A First-In-First-Out(FIFO) Linear List.  
8 Which means for any 0 < i < j ≤ n, I, j ∈ N∗, N& cannot be N$’s ancestor. 



3.5.2 Running Result 

The final running result is to grab 4 groups of poms and put them into the trolley, put 3 
groups of orange poms into the PVC pipe, grab the green frisbee and put it in the designated 
area, finally put the black frisbee to the top position. The fail rate is 0.04, which is acceptable. 

3.6 Alternation of the algorithm 

This algorithm should be working on all valid Botball Graphs. However, due to technical 
limitations, some tasks may be unable to perform; High fail rate may also refute what the 
program solves. 
The solution is to alter the graph itself, specifically by “disabling” a node, which means to set 
the T value of the node to an unreasonably big number so that it will not be reasonable to 
perform the task represented by the node, also resulting in a decrease of fail rate.  
Also, since this algorithm can only process situations with only one robot, the graph can be 
altered to match how the playground will be after another robot has already finished its job. 

4 Conclusion and Future 

According to statistical analysis and few experiments made on Botball playgrounds from 
season 2016 to 2018 compared to the optimal strategy we figured out with our mind, the 
conclusion that such program can improve the final score and success rate is correct with an 
order of magnitude. 

Fig 4.1 Average Score of Different Strategies 
Since this algorithm will work not only on one specific Botball playground, it may be used in 
real-life decision-making situations, when multiple tasks are to be selected to be done or not 
and there is time consumption when travelling from task to task. 
Nevertheless, while such algorithm can help determine optimal strategies easily, it has 
limitations to some degree. For example, it can only figure out the optimized strategy for one 
robot, and some unreasonable strategies may be hard to avoid due to modeling limitations 
(season 2016 in particular). 

131

317

503

155

402

582

0
100
200
300
400
500
600
700

2016 2017 2018

Average Score

Original Computer-Assisted



It is clear that much additional work will be required before we gain a sound and 
comprehensive understanding and such an algorithm is improved. 

Acknowledgments 

I would like to express my very great acknowledgements to several members in our school’s 
Computer Olympiads team, especially M.S. Ding for assistance with the mathematical 
explanation of Dijkstra’s Algorithm and Z.K. Wen for valuable discussions. I also would like 
to thank the following companies for their assistance with the collection of my data: X. Yu 
and X.Y. Liu. 

Reference 

[1] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936. Clarendon Press, 1986.
[2] J. L. Gross and J. Yellen, "Graph Theory and Its Applications, Second Edition," Taylor & Francis, 2005,

pp. 197-207.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," MIT Press,

2009, pp. 615-623.
[4] E. W. Dijkstra, "A note on two problems in connexion with graphs," Numerische Mathematik, journal

article vol. 1, no. 1, pp. 269-271, December 01 1959.
[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, "Introduction to Algorithms," MIT Press,

2009, pp. 603-615.
[6] D. Panigrahi, "Dynamic Programming," Available: 

https://www2.cs.duke.edu/courses/spring16/compsci330/Notes/dynamic.pdf 



Appendix 0 

0: Catching the frisbee. 
1: Putting orange poms into PVC. 
2: Putting orange poms into PVC. 
3: Waypoint – catch one group of poms on 
the ground or go to column on the left. 
4: Waypoint – catch all poms on the ground, 
go back to 3 or go to column in the middle. 
5: Catching all poms on the ground. 

6: Putting one group of poms, which are 
collected in 8, into trolley. 
7: Waypoint – starting area. 
8: Catching one group of poms on the 
ground. 
9: Putting all poms, which are collected in 5, 
into trolley. 



Appendix 1 

The sample search starts from node No. 4. 
Attempts (X means termination due to node repetition, O means termination due to an 
out-degree of 0), sets in red means plausible ones: 

[4, 3, 1, 0, O] 
[4, 3, 4] 
[4, 3, 7, 3, X] 

[4, 3, 8, 6, O] 
[4, 5, 9, 4] 
[4, 5, 9, 10]

[4, 2, 4] 
[4, 3, 0, O] 
[4, 3, 1, 3, X] 

 




