		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Model daily processes by creating and following algorithms (sets of step-by-step instructions) to complete tasks.			Module 2- Creating Algorithms (Unplugged) Module 3- Unplugged programming
		Composition is the combination of smaller tasks into more complex tasks. Students could create and follow algorithms for making simple foods, brushing their teeth, getting ready for school, participating in cleanup time.	Algorithms &		
1A-AP-08	K-2	Practice(s): Developing and Using Abstractions: 4.4	Programming	Abstraction	
		Model the way programs store and manipulate data by using numbers or other symbols to represent information.			Module 2- Creating Algorithms (Unplugged) Module 3- Unplugged programming Module 8- Writing your First Program Module 9- Moving Your Robot
		Information in the real world can be represented in computer programs. Students could use thumbs up/down as representations of yes/no, use arrows when writing algorithms to represent direction, or encode and decode words using numbers, pictographs, or other symbols to represent letters or words.	Algorithms &		Module 11- Using a Servo Module 12- Using Multiple Servos
1A-AP-09	K-2	Practice(s): Developing and Using Abstractions: 4.4	Programming	Abstraction	
1A-AP-10	к-2	Develop programs with sequences and simple loops, to express ideas or address a problem. Programming is used as a tool to create products that reflect a wide range of interests. Control structures specify the order in which instructions are executed within a program. Sequences are the order of instructions in a program. For example, if dialogue is not sequenced correctly when programming a simple animated story, the story will not make sense. If the commands to program a robot are not in the correct order, the robot will not complete the task desired. Loops allow for the repetition of a sequence of code multiple times. For example, in a program to show the life cycle of a butterfly, a loop could be combined with move commands to allow continual but controlled movement of the character. Practice(s): Creating Computational Artifacts: 5.2	Algorithms & Programming	Creating	Module 8- Writing your First Program Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos
1A-AP-11	К-2	Decompose (break down) the steps needed to solve a problem into a precise sequence of instructions. Decomposition is the act of breaking down tasks into simpler tasks. Students could break down the steps needed to make a peanut butter and jelly sandwich, to brush their teeth, to draw a shape, to move a character across the screen, or to solve a level of a coding app. Practice(s): Recognizing and Defining Computational Problems: 3.2	Algorithms & Programming	Computational Problems	Module 2- Creating Algorithms (Unplugged) Module 3- Unplugged programming Module 8- Writing your First Program Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Develop plans that describe a program's sequence of events, goals, and expected outcomes. Creating a plan for what a program will do clarifies the steps that will be needed to create a program and can be used to check if a program is correct. Students could create a planning document, such as a story map, a storyboard, or a sequential graphic organizer, to illustrate what their program will do. Students at this stage may complete the planning process with help from their teachers.	Algorithms 8	Creating	Module 2- Creating Algorithms (Unplugged) Module 3- Unplugged programming Module 8- Writing your First Program Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos
1A-AP-12	K-2	Computing: 5.1, 7.2	Programming	Communicating	
1A-AP-13	К-2	Give attribution when using the ideas and creations of others while developing programs. Using computers comes with a level of responsibility. Students should credit artifacts that were created by others, such as pictures, music, and code. Credit could be given orally, if presenting their work to the class, or in writing or orally, if sharing work on a class blog or website. Proper attribution at this stage does not require a formal citation, such as in a bibliography or works cited document. Practice(s): Communicating About Computing: 7.3	Algorithms & Programming	Communicating	Module 5- Cybersecurity Navigating the Digital World Teamwork and Project Management Strategies
1A-AP-14	К-2	Debug (identify and fix) errors in an algorithm or program that includes sequences and simple loops. Algorithms or programs may not always work correctly. Students should be able to use various strategies, such as changing the sequence of the steps, following the algorithm in a step-by-step manner, or trial and error to fix problems in algorithms and programs. Practice(s): Testing and Refining Computational Artifacts: 6.2	Algorithms & Programming	Testing	Module 8- Writing your First Program Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos
1A-AP-15	к-2	Using correct terminology, describe steps taken and choices made during the iterative process of program development. At this stage, students should be able to talk or write about the goals and expected outcomes of the programs they create and the choices that they made when creating programs. This could be done using coding journals, discussions with a teacher, class presentations, or blogs. Practice(s): Communicating About Computing: 7.2	Algorithms & Programming	Communicating	Module 8- Writing your First Program Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Select and operate appropriate software to perform			Module 5- Cybersecurity Navigating the Digital World
		a variety of tasks, and recognize that users have			
		different needs and preferences for the technology			
		they use			
		liley use.			
		People use computing devices to perform a variety of tasks accurately			
		app/program to use for tasks they are required to complete. For			
		example, if students are asked to draw a picture, they should be able to			
		open and use a drawing app/program to complete this task, or if they are			
		asked to create a presentation, they should be able to open and use			
		presentation software. In addition, with teacher guidance, students			
		should compare and discuss preferences for software with the same			
		primary functionality. Students could compare different web browsers or			
1A-CS-01	K-2	Practice(s): Fostering an Inclusive Computing Culture: 1.1	Computing Systems	Inclusion	
		Use appropriate terminology in identifying and			Module 4- Computer Communication
		describing the function of common physical			Module 6- Introduction to Robots
		components of computing systems (hardware).			
		A computing system is composed of hardware and software. Hardware			
		consists of physical components. Students should be able to identify and			
		describe the function of external hardware, such as desktop computers,			
		laptop computers, tablet devices, monitors, keyboards, mice, and			
14-05-02	K-2	Practice(s): Communicating About Computing: 7.2	Computing Systems	Communicating	
1/1 00 02		Describe basic hardware and software problems		Communicating	Module 6- Introduction to Robots
		using accurate terminology.			Module 7- Introduction to Programming Languages
		Problems with computing systems have different causes. Students at			Module 8- Writing Your First Program
		this level do not need to understand those causes, but they should be			
		able to communicate a problem with accurate terminology (e.g., when			
		an app or program is not working as expected, a device will not turn on,			
		the sound does not work, etc.). Ideally, students would be able to use			
		simple troubleshooting strategies, including turning a device off and on			
		to repool it, closing and reopening an app, turning on speakers, or			
		standard because these problems may not occur			
		Practice(s): Testing and Refining Computational Artifacts			
1A-CS-03	K-2	Communicating About Computing: 6.2, 7.2	Computing Systems	Testing, Communicating	

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Store, copy, search, retrieve, modify, and delete information using a computing device and define the information stored as data.			Module 8- Writing Your First Program
1A-DA-05	К-2	All information stored and processed by a computing device is referred to as data. Data can be images, text documents, audio files, software programs or apps, video files, etc. As students use software to complete tasks on a computing device, they will be manipulating data. Practice(s): Developing and Using Abstractions: 4.2	Data & Analysis	Abstraction	
		Collect and present the same data in various visual formats. The collection and use of data about the world around them is a routine part of life and influences how people live. Students could collect data on the weather, such as sunny days versus rainy days, the temperature at the beginning of the school day and end of the school day, or the inches of rain over the course of a storm. Students could count the number of pieces of each color of candy in a bag of candy, such as Skittles or M&Ms. Students could create surveys of things that interest them, such as favorite foods, pets, or TV shows, and collect answers to their surveys from their peers and others. The data collected could then be organized into two or more visualizations, such as a bar graph, pie chart, or pictograph. Practice(s): Communicating About Computing, Developing and Using	Date & Analysis	Communicating,	Activity M4 Activity M41 Activity M68 Activity M83 Activity M85 Activity M93 Activity M94 Activity M95 Activity M96
1A-DA-00	K-2	Identify and describe patterns in data visualizations, such as charts or graphs, to make predictions. Data can be used to make inferences or predictions about the world. Students could analyze a graph or pie chart of the colors in a bag of candy or the averages for colors in multiple bags of candy, identify the patterns for which colors are most and least represented, and then make a prediction as to which colors will have most and least in a new bag of candy. Students could analyze graphs of temperatures taken at the beginning of the school day and end of the school day, identify the patterns of when temperatures rise and fall, and predict if they think the temperature will rise or fall at a particular time of the day, based on the pattern observed.	Data & Analysis	Abstraction	Activity M4 Activity M41 Activity M68 Activity M83 Activity M84 Activity M85 Activity M93 Activity M94 Activity M95 Activity M96

New Mexico Standards					KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Compare how people live and work before and after			Module 5- Cybersecurity Navigating the Digital World
		the implementation or adoption of new computing			
		technology.			
		Computing technology has positively and negatively changed the way			
		people live and work. In the past, if students wanted to read about a			
		topic, they needed access to a library to find a book about it. Today,			
		students can view and read information on the Internet about a topic or			
		they can download e-books about it directly to a device. Such			
		read to a student, allowing for great accessibility.	Impacts of		
1A-IC-16	K-2	Practice(s): Communicating About Computing: 7	Computing	Communicating	
		Work respectfully and responsibly with others			Module 5- Cybersecurity Navigating the Digital World
		online.			Teamwork and Project Management Strategies
		Online communication facilitates positive interactions, such as sharing			
		ideas with many people, but the public and anonymous nature of online			
		communication also allows intimidating and inappropriate behavior in the			
		form of cyber bullying. Students could share their work on blogs or in			
		information that is inappropriate or that could personally identify them to			
		others. Students could provide feedback to others on their work in a kind			
		and respectful manner and could tell an adult if others are sharing things			
		they should not share or are treating others in an unkind or disrespectful			
14 10 17	14.2	manner on online collaborative spaces.	Impacts of	Collaborating	
TA-IC-17	K-2	Fractice(s). Collaborating Around Computing. 2.1	Computing	Collaborating	Module 5- Cybersecurity Navigating the Digital World
		devices appropriately			Module 8- Writing Your First Program
		Beenle use computing technology in ways that can holp or hurt			
		themselves or others. Harmful behaviors, such as sharing private			
		information and leaving public devices logged in should be recognized			
		and avoided.	Impacts of		
1A-IC-18	K-2	Practice(s): Communicating About Computing: 7.3	Computing	Communicating	
		Explain what passwords are and why we use them,			Module 5- Cybersecurity Navigating the Digital World
		and use strong passwords to protect devices and			
		information from unauthorized access.			
		Learning to protect one's device or information from unwanted use by			
		others is an essential first step in learning about cybersecurity. Students			
		are not required to use multiple strong passwords. They should	Notworks 8 the		
1A-NI-04	K-2	Practice(s): Communicating About Computing: 7.3	Internet	Communicating	
1A-NI-04	K-2	Practice(s): Communicating About Computing: 7.3	Internet	Communicating	

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Compare and refine multiple algorithms for the same task and determine which is the most appropriate. Different algorithms can achieve the same result, though sometimes one algorithm might be most appropriate for a specific situation. Students should be able to look at different ways to solve the same task and decide which would be the best solution. For example, students could use a map and plan multiple algorithms to get from one point to another. They could look at routes suggested by mapping software and change the route to something that would be better, based on which route is shortest or fastest or would avoid a problem. Students might compare algorithms that describe how to get ready for school. Another example might be to write different algorithms to draw a regular polygon and determine which algorithm would be the easiest to modify or repurpose to draw a different polygon. Practice(s): Testing and Refining Computational Artifacts, Recognizing	Algorithms &	Testing, Computational	Module 2- Creating Algorithms (Unplugged) Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
1B-AP-08	3-5	and Defining Computational Problems: 6.3, 3.3	Programming	Problems	
1B-AP-09	<u>3-5</u>	Create programs that use variables to store and modify data. Variables are used to store and modify data. At this level, understanding how to use variables is sufficient. For example, students may use mathematical operations to add to the score of a game or subtract from the number of lives available in a game. The use of a variable as a countdown timer is another example. Practice(s): Creating Computational Artifacts: 5.2 Create programs that include sequences, events, loops, and conditionals. Control structures specify the order (sequence) in which instructions are executed within a program and can be combined to support the creation of more complex programs. Events allow portions of a program to run based on a specific action. For example, students could write a program to explain the water cycle and when a specific component is clicked (event), the program would show information about that part of the water cycle. Conditionals allow for the execution of a portion of code in a program when a certain condition is true. For example, students could write a math game that asks multiplication fact questions and then uses a conditional to check whether or not the answer that was entered is	Algorithms & Programming	Creating	Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 10- Introduction to Engineering Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
		correct. Loops allow for the repetition of a sequence of code multiple			
1B-AP-10	3-5	famous historical character, students could use a loop to have the character walk across the screen as they introduce themselves. Practice(s): Creating Computational Artifacts: 5.2	Algorithms & Programming	Creating	
1B-AP-11	3-5	Decompose (break down) problems into smaller, manageable subproblems to facilitate the program development process. Decomposition is the act of breaking down tasks into simpler tasks. For example, students could create an animation by separating a story into different scenes. For each scene, they would select a background, place characters, and program actions. Practice(s): Recognizing and Defining Computational Problems: 3.2 Modify, remix, or incorporate portions of an existing program into one's own work, to develop something new or add more advanced features	Algorithms & Programming	Computational Problems	Module 2- Creating Algorithms (Unplugged) Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Module 2- Creating Algorithms (Unplugged) Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Introduction to Position Counter

		New Mexico Standards	KIPR Curriculum		
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
1B-AP-12	3-5	Programs can be broken down into smaller parts, which can be incorporated into new or existing programs. For example, students could modify prewritten code from a single-player game to create a two-player game with slightly different rules, remix and add another scene to an animated story, use code to make a ball bounce from another program in a new basketball game, or modify an image created by another student.	Algorithms &	Creating	Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
		Use an iterative process to plan the development of a program by including others' perspectives and considering user preferences. Planning is an important part of the iterative process of program development. Students outline key features, time and resource constraints, and user expectations. Students should document the plan as, for example, a storyboard, flowchart, pseudocode, or story map. Practice(s): Fostering an Inclusive Computing Culture, Creating	Algorithms &		Module 2- Creating Algorithms (Unplugged) Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter
1B-AP-13	3-5	Computational Artifacts: 1.1, 5.1	Programming	Inclusion, Creating	Writing Functions
1B-AP-14	3-5	Observe intellectual property rights and give appropriate attribution when creating or remixing programs. Intellectual property rights can vary by country but copyright laws give the creator of a work a set of rights that prevents others from copying the work and using it in ways that they may not like. Students should identify instances of remixing, when ideas are borrowed and iterated upon, and credit the original creator. Students should also consider common licenses that place limitations or restrictions on the use of computational artifacts, such as images and music downloaded from the Internet. At this stage, attribution should be written in the format required by the teacher and should always be included on any programs shared online. Practice(s): Creating Computational Artifacts, Communicating About Computing: 5.2, 7.3	Algorithms & Programming	Creating, Communicating	Module 5- Cybersecurity Navigating the Digital World Module 8- Writing Your First Program Teamwork and Project Management Strategies
1B-AP-15	3-5	Test and debug (identify and fix errors) a program or algorithm to ensure it runs as intended. As students develop programs they should continuously test those programs to see that they do what was expected and fix (debug), any errors. Students should also be able to successfully debug simple errors in programs created by others. Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2	Algorithms & Programming	Testina	Module 8- Writing Your First Program Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors
1B-AP-16	3-5	Take on varying roles, with teacher guidance, when collaborating with peers during the design, implementation, and review stages of program development. Collaborative computing is the process of performing a computational task by working in pairs or on teams. Because it involves asking for the contributions and feedback of others, effective collaboration can lead to better outcomes than working independently. Students should take turns in different roles during program development, such as note taker, facilitator, program tester, or "driver" of the computer. Practice(s): Collaborating Around Computing: 2.2 Describe choices made during program development, presentations	Algorithms & Programming	Collaborating	Teamwork and Project Management Strategies Module 8- Writing Your First Program Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Module 8- Writing Your First Program Module 9- Moving Your Robot
		and demonstrations.]		Module 10- Introduction to Engineering Module 11- Using a Servo

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
1B-AP-17	3-5	People communicate about their code to help others understand and use their programs. Another purpose of communicating one's design choices is to show an understanding of one's work. These explanations could manifest themselves as in-line code comments for collaborators and assessors, or as part of a summative presentation, such as a code walk-through or coding journal. Practice(s): Communicating About Computing: 7.2	Algorithms & Programming	Communicating	Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops
		Describe how internal and external parts of computing devices function to form a system. Computing devices often depend on other devices or components. For example, a robot depends on a physically attached light sensor to detect changes in brightness, whereas the light sensor depends on the robot for power. Keyboard input or a mouse click could cause an action to happen or information to be displayed on a screen; this could only happen because the computer has a processor to evaluate what is happening externally and produce corresponding responses. Students should describe how devices and components interact using correct terminology.			Module 4- Computer Communication Module 6- Introduction to Robots Module 14- Digital Sensors Module 15- Analog Sensors
1B-CS-01	3-5	Practice(s): Communicating About Computing: 7.2	Computing Systems	Communicating	

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Model how computer hardware and software work together as a system to accomplish tasks. In order for a person to accomplish tasks with a computer, both hardware and software are needed. At this stage, a model should only include the basic elements of a computer system, such as input, output, processor, sensors, and storage. Students could draw a model on paper or in a drawing program, program an animation to demonstrate it, or demonstrate it by acting this out in some way.			Module 4- Computer Communication Module 6- Introduction to Robots Module 14- Digital Sensors Module 15- Analog Sensors
1B-CS-02	3-5	Practice(s): Developing and Using Abstractions: 4.4	Computing Systems	Abstraction	
1B-CS-03	3-5	Determine potential solutions to solve simple hardware and software problems using common troubleshooting strategies. Although computing systems may vary, common troubleshooting strategies can be used on all of them. Students should be able to identify solutions to problems such as the device not responding, no power, no network, app crashing, no sound, or password entry not working. Should errors occur at school, the goal would be that students would use various strategies, such as rebooting the device, checking for power, checking network availability, closing and reopening an app, making sure speakers are turned on or headphones are plugged in, and making sure that the caps lock key is not on, to solve these problems, when possible. Practice(s): Testing and Refining Computational Artifacts: 6.2	Computing Systems	Testing	Module 4- Computer Communication Module 6- Introduction to Robots Module 8- Writing Your First Program Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
1B-DA-06	3-5	Organize and present collected data visually to highlight relationships and support a claim. Raw data has little meaning on its own. Data is often sorted or grouped to provide additional clarity. Organizing data can make interpreting and communicating it to others easier. Data points can be clustered by a number of commonalities. The same data could be manipulated in different ways to emphasize particular aspects or parts of the data set. For example, a data set of sports teams could be sorted by wins, points scored, or points allowed, and a data set of weather information could be sorted by high temperatures, low temperatures, or precipitation. Practice(s): Communicating About Computing: 7.1	Data & Analysis	Communicating	Activity M4 Activity M41 Activity M68 Activity M83 Activity M84 Activity M85 Activity M93 Activity M94 Activity M95 Activity M96

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Use data to highlight or propose cause-and-effect			Activity M4
		relationships, predict outcomes, or communicate			Activity M41
		an idea			Activity M68
		The ecouracy of data analysis is related to how realistically data is			Activity M83
		represented Inferences or predictions based on data are less likely to			Activity M85
		be accurate if the data is not sufficient or if the data is incorrect in some			Activity M03
		way. Students should be able to refer to data when communicating an			Activity M94
		idea. For example, in order to explore the relationship between speed,			Activity M95
		time, and distance, students could operate a robot at uniform speed, and			Activity M96
		at increasing time intervals to predict how far the robot travels at that			
		speed. In order to make an accurate prediction, one or two attempts of			
		differing times would not be enough. The robot may also collect			
		temperature data from a sensor, but that data would not be relevant for			
		distance the robot travels in order to develop a valid prediction. Students			
		could record the temperature at noon each day as a basis to show that			
		temperatures are higher in certain months of the year. If temperatures			
		are not recorded on non-school days or are recorded incorrectly or at			
		different times of the day, the data would be incomplete and the ideas			
		being communicated could be inaccurate. Students may also record the			
		day of the week on which the data was collected, but this would have no			
		relevance to whether temperatures are higher or lower. In order to have			
		sumchent and accurate data on which to communicate the idea, students			
1B-DA-07	3-5	Practice(s): Communicating About Computing: 7.1	Data & Analysis	Communicating	
		Discuss computing technologies that have changed		<u> </u>	Module 5- Cybersecurity Navigating the Digital World
		the world, and express how those technologies			
		influence, and are influenced by, cultural practices.			
		New computing technology is created and existing technologies are			
		modified for many reasons, including to increase their benefits, decrease			
		their risks, and meet societal needs. Students, with guidance from their			
		teacher, should discuss topics that relate to the history of technology			
		and the changes in the world due to technology. Topics could be based			
		on current news content, such as robotics, wireless Internet, mobile			
		computing devices, GPS systems, wearable computing, or how social	Imposto of		
10 10 19	3.5	Practice(c): Pocognizing and Defining Computational Problems: 2.1		Computational Problems	
	13-3	Practice(s). Recognizing and Defining Computational Problems: 3.1	Computing	Computational Problems	

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Brainstorm ways to improve the accessibility and usability of technology products for the diverse needs and wants of users.			Module 5- Cybersecurity Navigating the Digital World
10.10.10	2 5	The development and modification of computing technology are driven by people's needs and wants and can affect groups differently. Anticipating the needs and wants of diverse end users requires students to purposefully consider potential perspectives of users with different backgrounds, ability levels, points of view, and disabilities. For example, students may consider using both speech and text when they wish to convey information in a game. They may also wish to vary the types of programs they create, knowing that not everyone shares their own tastes.	Impacts of	Inclusion	
1B-IC-19	3-5	Seek diverse perspectives for the purpose of improving computational artifacts. Computing provides the possibility for collaboration and sharing of ideas and allows the benefit of diverse perspectives. For example, students could seek feedback from other groups in their class or students at another grade level. Or, with guidance from their teacher, they could use video conferencing tools or other online collaborative spaces, such as blogs, wikis, forums, or website comments, to gather feedback from individuals and groups about programming projects. Practice(s): Fostering an Inclusive Computing Culture: 1.1	Impacts of Computing	Inclusion	Teamwork and Project Management Strategies Module 9- Moving Your Robot Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
1B-IC-21	3-5	Use public domain or creative commons media, and refrain from copying or using material created by others without permission. Ethical complications arise from the opportunities provided by computing. The ease of sending and receiving copies of media on the Internet, such as video, photos, and music, creates the opportunity for unauthorized use, such as online piracy, and disregard of copyrights. Students should consider the licenses on computational artifacts that they wish to use. For example, the license on a downloaded image or audio file may have restrictions that prohibit modification, require attribution, or prohibit use entirely. Practice(s): Communicating About Computing: 7.3	Impacts of Computing	Communicating	Module 5- Cybersecurity Navigating the Digital World

		New Mexico Standards			KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Model how information is broken down into smaller			Module 4- Computer Communication
		pieces, transmitted as packets through multiple			
		devices over networks and the Internet, and			
		reassembled at the destination.			
		Information is sent and received over physical or wireless paths. It is			
		broken down into smaller pieces called packets, which are sent			
		independently and reassembled at the destination. Students should			
		demonstrate their understanding of this flow of information by, for			
		Instance, drawing a model of the way packets are transmitted, programming an animation to show how packets are transmitted, or			
		demonstrating this through an unplugged activity which has them act it			
		out in some way.	Networks & the		
1B-NI-04	3-5	Practice(s): Developing and Using Abstractions: 4.4	Internet	Abstraction	
		Discuss real-world cybersecurity problems and			Module 5- Cybersecurity Navigating the Digital World
		how personal information can be protected.			
		Just as we protect our personal property offline, we also need to protect			
		our devices and the information stored on them. Information can be			
		protected using various security measures. These measures can be physical and/or digital. Students could discuss or use a journaling or			
		blogging activity to explain orally or in writing about topics that relate to			
		personal cybersecurity issues. Discussion topics could be based on			
		current events related to cybersecurity or topics that are applicable to			
		students, such as the necessity of backing up data to guard against loss,			
		now to create strong passwords and the importance of not sharing			
		undated to protect data and systems	Networks & the		
1B-NI-05	3-5	Practice(s): Recognizing and Defining Computational Problems: 3.1	Internet	Computational Problems	
		Use flowcharts and/or pseudocode to address		•	Module 8- Writing Your First Program
		complex problems as algorithms.			Module 9- Moving Your Robot
		Complex problems are problems that would be difficult for students to			Module 10- Introduction to Engineering
		solve computationally. Students should use pseudocode and/or			Module 12- Using Multiple Servos
		flowcharts to organize and sequence an algorithm that addresses a			Module 13- Introduction to Variable
		complex problem, even though they may not actually program the			Module 14- Digital Sensors
		solutions. For example, students might express an algorithm that			Module 15- Analog Sensors
		such as size, colors, brand, comfort, and cost, Testing the algorithm with			Writing Expections
		a wide range of inputs and users allows students to refine their			for Loops
		recommendation algorithm and to identify other inputs they may have			Creating functions using Void
		initially excluded.	Algorithms &		
2-AP-10	6-8	Practice(s): Developing and Using Abstractions: 4.4, 4.1	Programming	Abstraction	

		New Mexico Standards	KIPR Curriculum		
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Create clearly named variables that represent different data types and perform operations on their values			Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors
		A variable is like a container with a name, in which the contents may change, but the name (identifier) does not. When planning and developing programs, students should decide when and how to declare and name new variables. Students should use naming conventions to improve program readability. Examples of operations include adding	-		Writing Functions for Loops Creating functions using Void
		points to the score, combining user input with words to make a sentence, changing the size of a picture, or adding a name to a list of people.	Algorithms &		
2-AP-11	6-8	Practice(s): Creating Computational Artifacts: 5.1, 5.2	Programming	Creating	
		Design and iteratively develop programs that combine control structures, including nested loops and compound conditionals.	Algorithms &		Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void Using the Camera Advanced Camera Code
		Control structures can be combined in many ways. Nested loops are loops placed within loops. Compound conditionals combine two or more conditions in a logical relationship (e.g., using AND, OR, and NOT), and nesting conditionals within one another allows the result of one conditional to lead to another. For example, when programming an interactive story, students could use a compound conditional within a loop to unlock a door only if a character has a key AND is touching the door.			
2-AP-12	6-8	Practice(s): Creating Computational Artifacts: 5.1, 5.2	Programming	Creating	
		Decompose problems and subproblems into parts to facilitate the design, implementation, and review of programs. Students should break down problems into subproblems, which can be further broken down to smaller parts. Decomposition facilitates aspects of program development by allowing students to focus on one piece at a time (e.g., getting input from the user, processing the data, and displaying the result to the user). Decomposition also enables different students to work on different parts at the same time. For example, animations can be decomposed into multiple scenes, which can be developed independently.	Algorithms &		Module 8- Writing Your First Program Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
2-AP-13	6-8	Practice(s): Recognizing and Defining Computational Problems: 3.2	Programming	Computational Problems	
		Create procedures with parameters to organize code and make it easier to reuse. Students should create procedures and/or functions that are used multiple times within a program to repeat groups of instructions. These procedures can be generalized by defining parameters that create different outputs for a wide range of inputs. For example, a procedure to draw a circle involves many instructions, but all of them can be invoked with one instruction, such as "drawCircle." By adding a radius parameter, the user can easily draw circles of different sizes.	Algorithms &		Writing Functions What is a Library?
2-AP-14	6-8	Practice(s): Developing and Using Abstractions: 4.1, 4.3	Programming	Abstraction	

		New Mexico Standards	KIPR Curriculum		
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Seek and incorporate feedback from team members and users to refine a solution that meets user needs.			Teamwork and Project Management Strategies Module 5- Cybersecurity Navigating the Digital World GitHub
2-AP-15	6-8	Development teams that employ user-centered design create solutions (e.g., programs and devices) that can have a large societal impact, such as an app that allows people with speech difficulties to translate hard-to- understand pronunciation into understandable language. Students should begin to seek diverse perspectives throughout the design process to improve their computational artifacts. Considerations of the end-user may include usability, accessibility, age-appropriate content, respectful language, user perspective, pronoun use, color contrast, and ease of use. Practice(s): Collaborating Around Computing, Fostering an Inclusive Computing Culture: 2.3, 1.1	Algorithms & Programming	Collaborating, Inclusion	
		Incorporate existing code, media, and libraries into original programs, and give attribution. Building on the work of others enables students to produce more interesting and powerful creations. Students should use portions of code, algorithms, and/or digital media in their own programs and websites. At this level, they may also import libraries and connect to web application program interfaces (APIs). For example, when creating a side-scrolling game, students may incorporate portions of code that create a realistic jump movement from another person's game, and they may also import Creative Commons-licensed images to use in the background. Students should give attribution to the original creators to acknowledge their contributions.	Algorithma 9	Abstraction Creating	Module 5- Cybersecurity Navigating the Digital World Writing Functions What is a Library?
2-AP-16	6-8	Computational Artifacts. Communicating About Computing: 4.2, 5.2, 7.3	Programming	Communicating	
2-AP-17	6-8	Systematically test and refine programs using a range of test cases. Use cases and test cases are created and analyzed to better meet the needs of users and to evaluate whether programs function as intended. At this level, testing should become a deliberate process that is more iterative, systematic, and proactive than at lower levels. Students should begin to test programs by considering potential errors, such as what will happen if a user enters invalid input (e.g., negative numbers and 0 instead of positive numbers). Practice(s): Testing and Refining Computational Artifacts: 6.1	Algorithms & Programming	Testing	Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
2-AP-18	6-8	Distribute tasks and maintain a project timeline when collaboratively developing computational artifacts. Collaboration is a common and crucial practice in programming development. Often, many individuals and groups work on the interdependent parts of a project together. Students should assume pre- defined roles within their teams and manage the project workflow using structured timelines. With teacher guidance, they will begin to create collective goals, expectations, and equitable workloads. For example, students may divide the design stage of a game into planning the storyboard, flowchart, and different parts of the game mechanics. They can then distribute tasks and roles among members of the team and assign deadlines. Practice(s): Collaborating Around Computing: 2.2	Algorithms & Programming	Collaborating	Teamwork and Project Management Strategies Module 5- Navigating a Digital World Github

		New Mexico Standards	KIPR Curriculum		
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Document programs in order to make them easier to follow, test, and debug. Documentation allows creators and others to more easily use and understand a program. Students should provide documentation for end users that explains their artifacts and how they function. For example, students could provide a project overview and clear user instructions. They should also incorporate comments in their product and communicate their process using design documents, flowcharts, and presentations.			Module 8- Writing Your First Program Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter Writing Functions for Loops Creating functions using Void
2-AP-19	6-8	Practice(s): Communicating About Computing: 7.2	Algorithms & Programming	Communicating	
		Recommend improvements to the design of			Module 5- Cybersecurity Navigating the Digital World
		computing devices, based on an analysis of how			
		users interact with the devices			
		The study of human–computer interaction (HCI) can improve the design of devices, including both hardware and software. Students should make recommendations for existing devices (e.g., a laptop, phone, or tablet) or design their own components or interface (e.g., create their own controllers). Teachers can guide students to consider usability through several lenses, including accessibility, ergonomics, and learnability. For example, assistive devices provide capabilities such as scanning written information and converting it to speech.			
2-CS-01	6-8	Practice(s): Recognizing and Defining Computational Problems: 3.3	Computing Systems	Computational Problems	
		Design projects that combine hardware and software components to collect and exchange data. Collecting and exchanging data involves input, output, storage, and processing. When possible, students should soled the bardware and	-		Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter
2-CS-02	6-8	software components for their project designs by considering factors such as functionality, cost, size, speed, accessibility, and aesthetics. For example, components for a mobile app could include accelerometer, GPS, and speech recognition. The choice of a device that connects wirelessly through a Bluetooth connection versus a physical USB connection involves a tradeoff between mobility and the need for an additional power source for the wireless device. Practice(s): Creating Computational Artifacts: 5.1	Computing Systems	Creating	
		Systematically identify and fix problems with			Module 8- Writing Your First Program
		computing devices and their components. Since a computing device may interact with interconnected devices within a system, problems may not be due to the specific computing device itself but to devices connected to it. Just as pilots use checklists to troubleshoot problems with aircraft systems, students should use a similar, structured process to troubleshoot problems with computing systems and ensure that potential solutions are not overlooked. Examples of troubleshooting strategies include following a troubleshooting flow diagram, making changes to software to see if hardware will work, checking connections and settings, and swapping in working components.			Module 9- Moving Your Robot Module 10- Introduction to Engineering Module 11- Using a Servo Module 12- Using Multiple Servos Module 13- Introduction to Variable Module 14- Digital Sensors Module 15- Analog Sensors Module 16- Motor Position Counter
2-CS-03	6-8	Practice(s): Testing and Refining Computational Artifacts: 6.2	Computing Systems	Testing	

		New Mexico Standards	KIPR Curriculum		
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Represent data using multiple encoding schemes.	•		Activity M95
		Data representations occur at multiple levels of abstraction, from the	-		Using the Camera
		physical storage of bits to the arrangement of information into organized			Advanced Camera Code
		formats (e.g., tables). Students should represent the same data in			
		multiple ways. For example, students could represent the same color			
		using binary, RGB values, hex codes (low-level representations), as well			
		as forms understandable by people, including words, symbols, and			
		digital displays of the color (high-level representations).			
2-DA-07	6-8	Practice(s): Developing and Using Abstractions: 4	Data & Analysis	Abstraction	
		Collect data using computational tools and			Module 14- Digital Sensors
		transform the data to make it more useful and			Module 15- Analog Sensors
		reliable.			Using the Camera
		As students continue to build on their ability to organize and present	-		Advanced Camera Code
		data visually to support a claim, they will need to understand when and			
		how to transform data for this purpose. Students should transform data			
		to remove errors, highlight or expose relationships, and/or make it easier			
		for computers to process. The cleaning of data is an important			
		transformation for ensuring consistent format and reducing noise and			
		errors (e.g., removing irrelevant responses in a survey). An example of a			
		transformation that highlights a relationship is representing males and			
	6.0	remaies as percentages of a whole instead of as individual counts.	Data & Analysia	Testing	
2-DA-06	0-0	Practice(s): Testing and Relining Computational Antiacts. 6.5	Data & Analysis	resung	Module 11- Using a Servo
		Renne computational models based on the data			Module 12- Using Multiple Servos
		they have generated.	1		Module 13- Introduction to Variable
		A model may be a programmed simulation of events or a representation			Module 14- Digital Sensors
		of how various data is related. In order to refine a model, students need			Module 15- Analog Sensors
		to consider which data points are relevant, now data points relate to			Module 16- Motor Position Counter
		a prediction about how far a ball will travel based on a table of data			
		related to the height and angle of a track. The students could then test			
		and refine their model by comparing predicted versus actual results and			
		considering whether other factors are relevant (e.g., size and mass of			
		the ball). Additionally, students could refine game mechanics based on			
		test outcomes in order to make the game more balanced or fair.			
		Practice(s): Creating Computational Artifacts, Developing and Using			
2-DA-09	6-8	Abstractions: 5.3, 4.4	Data & Analysis	Creating, Abstraction	
		Compare tradeoffs associated with computing			Module 5- Cybersecurity Navigating the Digital World
		technologies that affect people's everyday activities			
		and career options.			
		Advancements in computer technology are neither wholly positive nor	1		
		negative. However, the ways that people use computing technologies			
		have tradeoffs. Students should consider current events related to broad			
		ideas, including privacy, communication, and automation. For example,			
		driverless cars can increase convenience and reduce accidents, but			
		they are also susceptible to hacking. The emerging industry will reduce			
		the number of taxi and shared-ride drivers, but will create more software	luna ata af		
2-10-20	6-8	Practice(s): Communicating About Computing: 7.2		Communicating	
12-10-20	10-0	Fractice(S) . Communicating About Computing, 7.2	i Computina	Communicating	

		New Mexico Standards		KIPR Curriculum	
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Discuss issues of bias and accessibility in the	•		Module 5- Cybersecurity Navigating the Digital World
		design of existing technologies			
		Students should test and discuss the upphility of various technology	-		
		tools (e.g. apps, games, and devices) with the teacher's guidance. For			
		example, facial recognition software that works better for lighter skin			
		tones was likely developed with a homogeneous testing group and could			
		be improved by sampling a more diverse population. When discussing			
		accessibility, students may notice that allowing a user to change font			
		sizes and colors will not only make an interface usable for people with			
		low vision but also benefits users in various situations, such as in bright	land to the set		
2 10 21	6.9	Practice (c): Eastering on Inclusive Computing Culture: 1.2	Impacts of	Inclusion	
2-10-21	0-0	Collaborate with many contributors through	Computing		Teamwork and Project Management Strategies
		conaborate with many contributors through			Github
		strategies such as crowdsourcing or surveys when			
		creating a computational artifact.	-		
		Crowdsourcing is gathering services, ideas, or content from a large			
		group of people, especially from the online community. It can be done at			
		appropriate online communities like Scratch and Minecraft) For			
		example, a group of students could combine animations to create a			
		digital community mosaic. They could also solicit feedback from many			
		people though use of online communities and electronic surveys.			
		Practice(s): Collaborating Around Computing, Creating Computational	Impacts of		
2-IC-22	6-8	Artifacts: 2.4, 5.2	Computing	Collaborating, Creating	
		Describe tradeoffs between allowing information to			Github Madula 5. Cubarassarity Newigating the Digital World
		be public and keeping information private and			Module 5- Cybersecurity Navigating the Digital world
		secure.			
		Sharing information online can help establish, maintain, and strengthen	1		
		connections between people. For example, it allows artists and			
		designers to display their talents and reach a broad audience. However,			
		security attacks often start with personal information that is publicly			
		available online. Social engineering is based on tricking people into			
		attacks such as phishing and spoofing	Impacts of		
2-10-23	6-8	Practice(s): Communicating About Computing: 7.2	Computing	Communicating	
		Model the role of protocols in transmitting data			Module 4- Computer Communication
		across networks and the Internet			
		Protocols are rules that define how messages between computers are	-		
		sent. They determine how quickly and securely information is			
		transmitted across networks and the Internet, as well as how to handle			
		errors in transmission. Students should model how data is sent using			
		protocols to choose the fastest path, to deal with missing information,			
		and to deliver sensitive data securely. For example, students could			
		devise a plan for resending lost information or for interpreting a picture			
		the nurses of protocols and how they enable secure and errorless			
		communication. Knowledge of the details of how specific protocols work			
		is not expected.	Networks & the		
2-NI-04	6-8	Practice(s): Developing and Using Abstractions: 4.4	Internet	Abstraction	

New Mexico Standards					KIPR Curriculum
Identifier:	Grade:	Standard:	Concept:	Practice(s):	Module
		Explain how physical and digital security measures			Module 4- Computer Communication
		protect electronic information.			
		Information that is stored online is vulnerable to unwanted access.			
		Examples of physical security measures to protect data include keeping			
		passwords hidden, locking doors, making backup copies on external			
		Storage devices, and erasing a storage device before it is reused.			
		passwords firewalls that limit access to private networks and the use of			
		a protocol such as HTTPS to ensure secure data transmission.	Networks & the		
2-NI-05	6-8	Practice(s): Communicating About Computing: 7.2	Internet	Communicating	
		Apply multiple methods of encryption to model the			Module 4- Computer Communication
		secure transmission of information.			
		Encryption can be as simple as letter substitution or as complicated as			
		modern methods used to secure networks and the Internet. Students			
		should encode and decode messages using a variety of encryption			
		used to hide or secure information. For example, students could secure			
		messages using methods such as Caesar cyphers or steganography (i			
		e., hiding messages inside a picture or other data). They can also model			
		more complicated methods, such as public key encryption, through			
		unplugged activities.	Networks & the		
2-NI-06	6-8	Practice(s): Developing and Using Abstractions: 4.4	Internet	Abstraction	