
New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1A-AP-08 K-2

Model daily processes by creating and following 
algorithms (sets of step-by-step instructions) to 
complete tasks.

Algorithms & 
Programming Abstraction

Module 2- Creating Algorithms (Unplugged) 
Module 3- Unplugged programming

Composition is the combination of smaller tasks into more complex 
tasks. Students could create and follow algorithms for making simple 
foods, brushing their teeth, getting ready for school, participating in 
cleanup time.
Practice(s): Developing and Using Abstractions: 4.4

1A-AP-09 K-2

Model the way programs store and manipulate data 
by using numbers or other symbols to represent 
information.

Algorithms & 
Programming Abstraction

Module 2- Creating Algorithms (Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Information in the real world can be represented in computer programs. 
Students could use thumbs up/down as representations of yes/no, use 
arrows when writing algorithms to represent direction, or encode and 
decode words using numbers, pictographs, or other symbols to 
represent letters or words.
Practice(s): Developing and Using Abstractions: 4.4

1A-AP-10 K-2

Develop programs with sequences and simple 
loops, to express ideas or address a problem.

Algorithms & 
Programming Creating

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple ServosProgramming is used as a tool to create products that reflect a wide 

range of interests. Control structures specify the order in which 
instructions are executed within a program. Sequences are the order of 
instructions in a program. For example, if dialogue is not sequenced 
correctly when programming a simple animated story, the story will not 
make sense. If the commands to program a robot are not in the correct 
order, the robot will not complete the task desired. Loops allow for the 
repetition of a sequence of code multiple times. For example, in a 
program to show the life cycle of a butterfly, a loop could be combined 
with move commands to allow continual but controlled movement of the 
character.
Practice(s): Creating Computational Artifacts: 5.2

1A-AP-11 K-2

Decompose (break down) the steps needed to solve 
a problem into a precise sequence of instructions.

Algorithms & 
Programming Computational Problems

Module 2- Creating Algorithms (Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Decomposition is the act of breaking down tasks into simpler tasks. 
Students could break down the steps needed to make a peanut butter 
and jelly sandwich, to brush their teeth, to draw a shape, to move a 
character across the screen, or to solve a level of a coding app.
Practice(s): Recognizing and Defining Computational Problems: 3.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1A-AP-12 K-2

Develop plans that describe a program’s sequence 
of events, goals, and expected outcomes.

Algorithms & 
Programming

Creating, 
Communicating

Module 2- Creating Algorithms (Unplugged) 
Module 3- Unplugged programming
Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

Creating a plan for what a program will do clarifies the steps that will be 
needed to create a program and can be used to check if a program is 
correct. Students could create a planning document, such as a story 
map, a storyboard, or a sequential graphic organizer, to illustrate what 
their program will do. Students at this stage may complete the planning 
process with help from their teachers.
Practice(s): Creating Computational Artifacts, Communicating About 
Computing: 5.1, 7.2

1A-AP-13 K-2

Give attribution when using the ideas and creations 
of others while developing programs.

Algorithms & 
Programming Communicating

Module 5- Cybersecurity Navigating the Digital World
Teamwork and Project Management Strategies

Using computers comes with a level of responsibility. Students should 
credit artifacts that were created by others, such as pictures, music, and 
code. Credit could be given orally, if presenting their work to the class, 
or in writing or orally, if sharing work on a class blog or website. Proper 
attribution at this stage does not require a formal citation, such as in a 
bibliography or works cited document.
Practice(s): Communicating About Computing: 7.3

1A-AP-14 K-2

Debug (identify and fix) errors in an algorithm or 
program that includes sequences and simple loops.

Algorithms & 
Programming Testing

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple ServosAlgorithms or programs may not always work correctly. Students should 

be able to use various strategies, such as changing the sequence of the 
steps, following the algorithm in a step-by-step manner, or trial and error 
to fix problems in algorithms and programs.
Practice(s): Testing and Refining Computational Artifacts: 6.2

1A-AP-15 K-2

Using correct terminology, describe steps taken 
and choices made during the iterative process of 
program development.

Algorithms & 
Programming Communicating

Module 8- Writing your First Program
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos

At this stage, students should be able to talk or write about the goals 
and expected outcomes of the programs they create and the choices 
that they made when creating programs. This could be done using 
coding journals, discussions with a teacher, class presentations, or 
blogs.
Practice(s): Communicating About Computing: 7.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1A-CS-01 K-2

Select and operate appropriate software to perform 
a variety of tasks, and recognize that users have 
different needs and preferences for the technology 
they use.

Computing Systems Inclusion

Module 5- Cybersecurity Navigating the Digital World

People use computing devices to perform a variety of tasks accurately 
and quickly. Students should be able to select the appropriate 
app/program to use for tasks they are required to complete. For 
example, if students are asked to draw a picture, they should be able to 
open and use a drawing app/program to complete this task, or if they are 
asked to create a presentation, they should be able to open and use 
presentation software. In addition, with teacher guidance, students 
should compare and discuss preferences for software with the same 
primary functionality. Students could compare different web browsers or 
word processing, presentation, or drawing programs.
Practice(s): Fostering an Inclusive Computing Culture: 1.1

1A-CS-02 K-2

Use appropriate terminology in identifying and 
describing the function of common physical 
components of computing systems (hardware).

Computing Systems Communicating

Module 4- Computer Communication
Module 6- Introduction to Robots

A computing system is composed of hardware and software. Hardware 
consists of physical components.Students should be able to identify and 
describe the function of external hardware, such as desktop computers, 
laptop computers, tablet devices, monitors, keyboards, mice, and 
printers.
Practice(s): Communicating About Computing: 7.2

1A-CS-03 K-2

Describe basic hardware and software problems 
using accurate terminology.

Computing Systems Testing, Communicating

Module 6- Introduction to Robots
Module 7- Introduction to Programming Languages
Module 8- Writing Your First Program

Problems with computing systems have different causes. Students at 
this level do not need to understand those causes, but they should be 
able to communicate a problem with accurate terminology (e.g., when 
an app or program is not working as expected, a device will not turn on, 
the sound does not work, etc.). Ideally, students would be able to use 
simple troubleshooting strategies, including turning a device off and on 
to reboot it, closing and reopening an app, turning on speakers, or 
plugging in headphones. These are, however, not specified in the 
standard, because these problems may not occur.
Practice(s): Testing and Refining Computational Artifacts, 
Communicating About Computing: 6.2, 7.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1A-DA-05 K-2

Store, copy, search, retrieve, modify, and delete 
information using a computing device and define 
the information stored as data.

Data & Analysis Abstraction

Module 8- Writing Your First Program

All information stored and processed by a computing device is referred 
to as data. Data can be images, text documents, audio files, software 
programs or apps, video files, etc. As students use software to complete 
tasks on a computing device, they will be manipulating data.
Practice(s): Developing and Using Abstractions: 4.2

1A-DA-06 K-2

Collect and present the same data in various visual 
formats.

Data & Analysis
Communicating, 
Abstraction

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

The collection and use of data about the world around them is a routine 
part of life and influences how people live. Students could collect data 
on the weather, such as sunny days versus rainy days, the temperature 
at the beginning of the school day and end of the school day, or the 
inches of rain over the course of a storm. Students could count the 
number of pieces of each color of candy in a bag of candy, such as 
Skittles or M&Ms. Students could create surveys of things that interest 
them, such as favorite foods, pets, or TV shows, and collect answers to 
their surveys from their peers and others. The data collected could then 
be organized into two or more visualizations, such as a bar graph, pie 
chart, or pictograph.
Practice(s): Communicating About Computing, Developing and Using 
Abstractions: 7.1, 4.4

1A-DA-07 K-2

Identify and describe patterns in data 
visualizations, such as charts or graphs, to make 
predictions.

Data & Analysis Abstraction

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Data can be used to make inferences or predictions about the world. 
Students could analyze a graph or pie chart of the colors in a bag of 
candy or the averages for colors in multiple bags of candy, identify the 
patterns for which colors are most and least represented, and then make 
a prediction as to which colors will have most and least in a new bag of 
candy. Students could analyze graphs of temperatures taken at the 
beginning of the school day and end of the school day, identify the 
patterns of when temperatures rise and fall, and predict if they think the 
temperature will rise or fall at a particular time of the day, based on the 
pattern observed.
Practice(s): Developing and Using Abstractions: 4.1



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1A-IC-16 K-2

Compare how people live and work before and after 
the implementation or adoption of new computing 
technology.

Impacts of 
Computing Communicating

Module 5- Cybersecurity Navigating the Digital World

Computing technology has positively and negatively changed the way 
people live and work. In the past, if students wanted to read about a 
topic, they needed access to a library to find a book about it. Today, 
students can view and read information on the Internet about a topic or 
they can download e-books about it directly to a device. Such 
information may be available in more than one language and could be 
read to a student, allowing for great accessibility.
Practice(s): Communicating About Computing: 7

1A-IC-17 K-2

Work respectfully and responsibly with others 
online.

Impacts of 
Computing Collaborating

Module 5- Cybersecurity Navigating the Digital World
Teamwork and Project Management Strategies

Online communication facilitates positive interactions, such as sharing 
ideas with many people, but the public and anonymous nature of online 
communication also allows intimidating and inappropriate behavior in the 
form of cyber bullying. Students could share their work on blogs or in 
other collaborative spaces online, taking care to avoid sharing 
information that is inappropriate or that could personally identify them to 
others. Students could provide feedback to others on their work in a kind 
and respectful manner and could tell an adult if others are sharing things 
they should not share or are treating others in an unkind or disrespectful 
manner on online collaborative spaces.
Practice(s): Collaborating Around Computing: 2.1

1A-IC-18 K-2

Keep login information private, and log off of 
devices appropriately.

Impacts of 
Computing Communicating

Module 5- Cybersecurity Navigating the Digital World
Module 8- Writing Your First Program

People use computing technology in ways that can help or hurt 
themselves or others. Harmful behaviors, such as sharing private 
information and leaving public devices logged in should be recognized 
and avoided.
Practice(s): Communicating About Computing: 7.3

1A-NI-04 K-2

Explain what passwords are and why we use them, 
and use strong passwords to protect devices and 
information from unauthorized access.

Networks & the 
Internet Communicating

Module 5- Cybersecurity Navigating the Digital World

Learning to protect one's device or information from unwanted use by 
others is an essential first step in learning about cybersecurity. Students 
are not required to use multiple strong passwords. They should 
appropriately use and protect the passwords they are required to use.
Practice(s): Communicating About Computing: 7.3



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-AP-08 3-5

Compare and refine multiple algorithms for the 
same task and determine which is the most 
appropriate.

Algorithms & 
Programming

Testing, Computational 
Problems

Module 2- Creating Algorithms (Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Different algorithms can achieve the same result, though sometimes one 
algorithm might be most appropriate for a specific situation. Students 
should be able to look at different ways to solve the same task and 
decide which would be the best solution. For example, students could 
use a map and plan multiple algorithms to get from one point to another. 
They could look at routes suggested by mapping software and change 
the route to something that would be better, based on which route is 
shortest or fastest or would avoid a problem. Students might compare 
algorithms that describe how to get ready for school. Another example 
might be to write different algorithms to draw a regular polygon and 
determine which algorithm would be the easiest to modify or repurpose 
to draw a different polygon.
Practice(s): Testing and Refining Computational Artifacts, Recognizing 
and Defining Computational Problems: 6.3, 3.3

1B-AP-09 3-5

Create programs that use variables to store and 
modify data.

Algorithms & 
Programming Creating

Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Variables are used to store and modify data. At this level, understanding 
how to use variables is sufficient. For example, students may use 
mathematical operations to add to the score of a game or subtract from 
the number of lives available in a game. The use of a variable as a 
countdown timer is another example.
Practice(s): Creating Computational Artifacts: 5.2

1B-AP-10 3-5

Create programs that include sequences, events, 
loops, and conditionals.

Algorithms & 
Programming Creating

Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Control structures specify the order (sequence) in which instructions are 
executed within a program and can be combined to support the creation 
of more complex programs. Events allow portions of a program to run 
based on a specific action. For example, students could write a program 
to explain the water cycle and when a specific component is clicked 
(event), the program would show information about that part of the water 
cycle. Conditionals allow for the execution of a portion of code in a 
program when a certain condition is true. For example, students could 
write a math game that asks multiplication fact questions and then uses 
a conditional to check whether or not the answer that was entered is 
correct. Loops allow for the repetition of a sequence of code multiple 
times. For example, in a program that produces an animation about a 
famous historical character, students could use a loop to have the 
character walk across the screen as they introduce themselves.
Practice(s): Creating Computational Artifacts: 5.2

1B-AP-11 3-5

Decompose (break down) problems into smaller, 
manageable subproblems to facilitate the program 
development process.

Algorithms & 
Programming Computational Problems

Module 2- Creating Algorithms (Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Decomposition is the act of breaking down tasks into simpler tasks. For 
example, students could create an animation by separating a story into 
different scenes. For each scene, they would select a background, place 
characters, and program actions.
Practice(s): Recognizing and Defining Computational Problems: 3.2

1B-AP-12 3-5

Modify, remix, or incorporate portions of an 
existing program into one's own work, to develop 
something new or add more advanced features.

Algorithms & 
Programming Creating

Module 2- Creating Algorithms (Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-AP-12 3-5

Programs can be broken down into smaller parts, which can be 
incorporated into new or existing programs. For example, students could 
modify prewritten code from a single-player game to create a two-player 
game with slightly different rules, remix and add another scene to an 
animated story, use code to make a ball bounce from another program 
in a new basketball game, or modify an image created by another 
student. Algorithms & 

Programming Creating

Module 2- Creating Algorithms (Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using VoidPractice(s): Creating Computational Artifacts: 5.3

1B-AP-13 3-5

Use an iterative process to plan the development of 
a program by including others' perspectives and 
considering user preferences.

Algorithms & 
Programming Inclusion, Creating

Module 2- Creating Algorithms (Unplugged) 
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Planning is an important part of the iterative process of program 
development. Students outline key features, time and resource 
constraints, and user expectations. Students should document the plan 
as, for example, a storyboard, flowchart, pseudocode, or story map.
Practice(s): Fostering an Inclusive Computing Culture, Creating 
Computational Artifacts: 1.1, 5.1

1B-AP-14 3-5

Observe intellectual property rights and give 
appropriate attribution when creating or remixing 
programs.

Algorithms & 
Programming

Creating, 
Communicating

Module 5- Cybersecurity Navigating the Digital World
Module 8- Writing Your First Program
Teamwork and Project Management Strategies

Intellectual property rights can vary by country but copyright laws give 
the creator of a work a set of rights that prevents others from copying 
the work and using it in ways that they may not like. Students should 
identify instances of remixing, when ideas are borrowed and iterated 
upon, and credit the original creator. Students should also consider 
common licenses that place limitations or restrictions on the use of 
computational artifacts, such as images and music downloaded from the 
Internet. At this stage, attribution should be written in the format required 
by the teacher and should always be included on any programs shared 
online.
Practice(s): Creating Computational Artifacts, Communicating About 
Computing: 5.2, 7.3

1B-AP-15 3-5

Test and debug (identify and fix errors) a program 
or algorithm to ensure it runs as intended.

Algorithms & 
Programming Testing

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

As students develop programs they should continuously test those 
programs to see that they do what was expected and fix (debug), any 
errors. Students should also be able to successfully debug simple errors 
in programs created by others.
Practice(s): Testing and Refining Computational Artifacts: 6.1, 6.2

1B-AP-16 3-5

Take on varying roles, with teacher guidance, when 
collaborating with peers during the design, 
implementation, and review stages of program 
development.

Algorithms & 
Programming Collaborating

Teamwork and Project Management Strategies
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Collaborative computing is the process of performing a computational 
task by working in pairs or on teams. Because it involves asking for the 
contributions and feedback of others, effective collaboration can lead to 
better outcomes than working independently. Students should take turns 
in different roles during program development, such as note taker, 
facilitator, program tester, or “driver” of the computer.
Practice(s): Collaborating Around Computing: 2.2

1B-AP-17 3-5

Describe choices made during program 
development using code comments, presentations, 
and demonstrations.

Algorithms & 
Programming Communicating

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-AP-17 3-5

People communicate about their code to help others understand and 
use their programs. Another purpose of communicating one's design 
choices is to show an understanding of one's work. These explanations 
could manifest themselves as in-line code comments for collaborators 
and assessors, or as part of a summative presentation, such as a code 
walk-through or coding journal. Algorithms & 

Programming Communicating

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Practice(s): Communicating About Computing: 7.2

1B-CS-01 3-5

Describe how internal and external parts of 
computing devices function to form a system.

Computing Systems Communicating

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 14- Digital Sensors
Module 15- Analog SensorsComputing devices often depend on other devices or components. For 

example, a robot depends on a physically attached light sensor to detect 
changes in brightness, whereas the light sensor depends on the robot 
for power. Keyboard input or a mouse click could cause an action to 
happen or information to be displayed on a screen; this could only 
happen because the computer has a processor to evaluate what is 
happening externally and produce corresponding responses. Students 
should describe how devices and components interact using correct 
terminology.
Practice(s): Communicating About Computing: 7.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-CS-02 3-5

Model how computer hardware and software work 
together as a system to accomplish tasks.

Computing Systems Abstraction

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 14- Digital Sensors
Module 15- Analog SensorsIn order for a person to accomplish tasks with a computer, both 

hardware and software are needed. At this stage, a model should only 
include the basic elements of a computer system, such as input, output, 
processor, sensors, and storage. Students could draw a model on paper 
or in a drawing program, program an animation to demonstrate it, or 
demonstrate it by acting this out in some way.
Practice(s): Developing and Using Abstractions: 4.4

1B-CS-03 3-5

Determine potential solutions to solve simple 
hardware and software problems using common 
troubleshooting strategies.

Computing Systems Testing

Module 4- Computer Communication
Module 6- Introduction to Robots
Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Although computing systems may vary, common troubleshooting 
strategies can be used on all of them. Students should be able to 
identify solutions to problems such as the device not responding, no 
power, no network, app crashing, no sound, or password entry not 
working. Should errors occur at school, the goal would be that students 
would use various strategies, such as rebooting the device, checking for 
power, checking network availability, closing and reopening an app, 
making sure speakers are turned on or headphones are plugged in, and 
making sure that the caps lock key is not on, to solve these problems, 
when possible.
Practice(s): Testing and Refining Computational Artifacts: 6.2

1B-DA-06 3-5

Organize and present collected data visually to 
highlight relationships and support a claim.

Data & Analysis Communicating

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

Raw data has little meaning on its own. Data is often sorted or grouped 
to provide additional clarity. Organizing data can make interpreting and 
communicating it to others easier. Data points can be clustered by a 
number of commonalities. The same data could be manipulated in 
different ways to emphasize particular aspects or parts of the data set. 
For example, a data set of sports teams could be sorted by wins, points 
scored, or points allowed, and a data set of weather information could 
be sorted by high temperatures, low temperatures, or precipitation.
Practice(s): Communicating About Computing: 7.1



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-DA-07 3-5

Use data to highlight or propose cause-and-effect 
relationships, predict outcomes, or communicate 
an idea.

Data & Analysis Communicating

Activity M4
Activity M41
Activity M68
Activity M83
Activity M84
Activity M85
Activity M93
Activity M94
Activity M95
Activity M96

The accuracy of data analysis is related to how realistically data is 
represented. Inferences or predictions based on data are less likely to 
be accurate if the data is not sufficient or if the data is incorrect in some 
way. Students should be able to refer to data when communicating an 
idea. For example, in order to explore the relationship between speed, 
time, and distance, students could operate a robot at uniform speed, and 
at increasing time intervals to predict how far the robot travels at that 
speed. In order to make an accurate prediction, one or two attempts of 
differing times would not be enough. The robot may also collect 
temperature data from a sensor, but that data would not be relevant for 
the task. Students must also make accurate measurements of the 
distance the robot travels in order to develop a valid prediction. Students 
could record the temperature at noon each day as a basis to show that 
temperatures are higher in certain months of the year. If temperatures 
are not recorded on non-school days or are recorded incorrectly or at 
different times of the day, the data would be incomplete and the ideas 
being communicated could be inaccurate. Students may also record the 
day of the week on which the data was collected, but this would have no 
relevance to whether temperatures are higher or lower. In order to have 
sufficient and accurate data on which to communicate the idea, students 
might want to use data provided by a governmental weather agency.
Practice(s): Communicating About Computing: 7.1

1B-IC-18 3-5

Discuss computing technologies that have changed 
the world, and express how those technologies 
influence, and are influenced by, cultural practices.

Impacts of 
Computing Computational Problems

Module 5- Cybersecurity Navigating the Digital World

New computing technology is created and existing technologies are 
modified for many reasons, including to increase their benefits, decrease 
their risks, and meet societal needs. Students, with guidance from their 
teacher, should discuss topics that relate to the history of technology 
and the changes in the world due to technology. Topics could be based 
on current news content, such as robotics, wireless Internet, mobile 
computing devices, GPS systems, wearable computing, or how social 
media has influenced social and political changes.
Practice(s): Recognizing and Defining Computational Problems: 3.1



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-IC-19 3-5

Brainstorm ways to improve the accessibility and 
usability of technology products for the diverse 
needs and wants of users.

Impacts of 
Computing Inclusion

Module 5- Cybersecurity Navigating the Digital World

The development and modification of computing technology are driven 
by people’s needs and wants and can affect groups differently. 
Anticipating the needs and wants of diverse end users requires students 
to purposefully consider potential perspectives of users with different 
backgrounds, ability levels, points of view, and disabilities. For example, 
students may consider using both speech and text when they wish to 
convey information in a game. They may also wish to vary the types of 
programs they create, knowing that not everyone shares their own 
tastes.
Practice(s): Fostering an Inclusive Computing Culture: 1.2

1B-IC-20 3-5

Seek diverse perspectives for the purpose of 
improving computational artifacts.

Impacts of 
Computing Inclusion

Teamwork and Project Management Strategies
Module 9- Moving Your Robot
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void
GitHub

Computing provides the possibility for collaboration and sharing of ideas 
and allows the benefit of diverse perspectives. For example, students 
could seek feedback from other groups in their class or students at 
another grade level. Or, with guidance from their teacher, they could use 
video conferencing tools or other online collaborative spaces, such as 
blogs, wikis, forums, or website comments, to gather feedback from 
individuals and groups about programming projects.
Practice(s): Fostering an Inclusive Computing Culture: 1.1

1B-IC-21 3-5

Use public domain or creative commons media, and 
refrain from copying or using material created by 
others without permission.

Impacts of 
Computing Communicating

Module 5- Cybersecurity Navigating the Digital World

Ethical complications arise from the opportunities provided by 
computing. The ease of sending and receiving copies of media on the 
Internet, such as video, photos, and music, creates the opportunity for 
unauthorized use, such as online piracy, and disregard of copyrights. 
Students should consider the licenses on computational artifacts that 
they wish to use. For example, the license on a downloaded image or 
audio file may have restrictions that prohibit modification, require 
attribution, or prohibit use entirely.
Practice(s): Communicating About Computing: 7.3



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

1B-NI-04 3-5

Model how information is broken down into smaller 
pieces, transmitted as packets through multiple 
devices over networks and the Internet, and 
reassembled at the destination.

Networks & the 
Internet Abstraction

Module 4- Computer Communication

Information is sent and received over physical or wireless paths. It is 
broken down into smaller pieces called packets, which are sent 
independently and reassembled at the destination. Students should 
demonstrate their understanding of this flow of information by, for 
instance, drawing a model of the way packets are transmitted, 
programming an animation to show how packets are transmitted, or 
demonstrating this through an unplugged activity which has them act it 
out in some way.
Practice(s): Developing and Using Abstractions: 4.4

1B-NI-05 3-5

Discuss real-world cybersecurity problems and 
how personal information can be protected.

Networks & the 
Internet Computational Problems

Module 5- Cybersecurity Navigating the Digital World

Just as we protect our personal property offline, we also need to protect 
our devices and the information stored on them. Information can be 
protected using various security measures. These measures can be 
physical and/or digital. Students could discuss or use a journaling or 
blogging activity to explain, orally or in writing, about topics that relate to 
personal cybersecurity issues. Discussion topics could be based on 
current events related to cybersecurity or topics that are applicable to 
students, such as the necessity of backing up data to guard against loss, 
how to create strong passwords and the importance of not sharing 
passwords, or why we should install and keep anti-virus software 
updated to protect data and systems.
Practice(s): Recognizing and Defining Computational Problems: 3.1

2-AP-10 6-8

Use flowcharts and/or pseudocode to address 
complex problems as algorithms.

Algorithms & 
Programming Abstraction

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Complex problems are problems that would be difficult for students to 
solve computationally. Students should use pseudocode and/or 
flowcharts to organize and sequence an algorithm that addresses a 
complex problem, even though they may not actually program the 
solutions. For example, students might express an algorithm that 
produces a recommendation for purchasing sneakers based on inputs 
such as size, colors, brand, comfort, and cost. Testing the algorithm with 
a wide range of inputs and users allows students to refine their 
recommendation algorithm and to identify other inputs they may have 
initially excluded.
Practice(s): Developing and Using Abstractions: 4.4, 4.1



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-AP-11 6-8

Create clearly named variables that represent 
different data types and perform operations on their 
values.

Algorithms & 
Programming Creating

Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

A variable is like a container with a name, in which the contents may 
change, but the name (identifier) does not. When planning and 
developing programs, students should decide when and how to declare 
and name new variables. Students should use naming conventions to 
improve program readability. Examples of operations include adding 
points to the score, combining user input with words to make a 
sentence, changing the size of a picture, or adding a name to a list of 
people.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

2-AP-12 6-8

Design and iteratively develop programs that 
combine control structures, including nested loops 
and compound conditionals.

Algorithms & 
Programming Creating

Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void
Using the Camera
Advanced Camera Code

Control structures can be combined in many ways. Nested loops are 
loops placed within loops. Compound conditionals combine two or more 
conditions in a logical relationship (e.g., using AND, OR, and NOT), and 
nesting conditionals within one another allows the result of one 
conditional to lead to another. For example, when programming an 
interactive story, students could use a compound conditional within a 
loop to unlock a door only if a character has a key AND is touching the 
door.
Practice(s): Creating Computational Artifacts: 5.1, 5.2

2-AP-13 6-8

Decompose problems and subproblems into parts 
to facilitate the design, implementation, and review 
of programs.

Algorithms & 
Programming Computational Problems

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Students should break down problems into subproblems, which can be 
further broken down to smaller parts. Decomposition facilitates aspects 
of program development by allowing students to focus on one piece at a 
time (e.g., getting input from the user, processing the data, and 
displaying the result to the user). Decomposition also enables different 
students to work on different parts at the same time. For example, 
animations can be decomposed into multiple scenes, which can be 
developed independently.
Practice(s): Recognizing and Defining Computational Problems: 3.2

2-AP-14 6-8

Create procedures with parameters to organize 
code and make it easier to reuse.

Algorithms & 
Programming Abstraction

Writing Functions
What is a Library?

Students should create procedures and/or functions that are used 
multiple times within a program to repeat groups of instructions. These 
procedures can be generalized by defining parameters that create 
different outputs for a wide range of inputs. For example, a procedure to 
draw a circle involves many instructions, but all of them can be invoked 
with one instruction, such as “drawCircle.” By adding a radius 
parameter, the user can easily draw circles of different sizes.
Practice(s): Developing and Using Abstractions: 4.1, 4.3



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-AP-15 6-8

Seek and incorporate feedback from team members 
and users to refine a solution that meets user 
needs.

Algorithms & 
Programming Collaborating, Inclusion

Teamwork and Project Management Strategies
Module 5- Cybersecurity Navigating the Digital World
GitHub

Development teams that employ user-centered design create solutions 
(e.g., programs and devices) that can have a large societal impact, such 
as an app that allows people with speech difficulties to translate hard-to-
understand pronunciation into understandable language. Students 
should begin to seek diverse perspectives throughout the design 
process to improve their computational artifacts. Considerations of the 
end-user may include usability, accessibility, age-appropriate content, 
respectful language, user perspective, pronoun use, color contrast, and 
ease of use.
Practice(s): Collaborating Around Computing, Fostering an Inclusive 
Computing Culture: 2.3, 1.1

2-AP-16 6-8

Incorporate existing code, media, and libraries into 
original programs, and give attribution.

Algorithms & 
Programming

Abstraction, Creating, 
Communicating

Module 5- Cybersecurity Navigating the Digital World
Writing Functions
What is a Library?

Building on the work of others enables students to produce more 
interesting and powerful creations. Students should use portions of 
code, algorithms, and/or digital media in their own programs and 
websites. At this level, they may also import libraries and connect to web 
application program interfaces (APIs). For example, when creating a 
side-scrolling game, students may incorporate portions of code that 
create a realistic jump movement from another person's game, and they 
may also import Creative Commons-licensed images to use in the 
background. Students should give attribution to the original creators to 
acknowledge their contributions.
Practice(s): Developing and Using Abstractions, Creating 
Computational Artifacts, Communicating About Computing: 4.2, 5.2, 7.3

2-AP-17 6-8

Systematically test and refine programs using a 
range of test cases.

Algorithms & 
Programming Testing

Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Use cases and test cases are created and analyzed to better meet the 
needs of users and to evaluate whether programs function as intended. 
At this level, testing should become a deliberate process that is more 
iterative, systematic, and proactive than at lower levels. Students should 
begin to test programs by considering potential errors, such as what will 
happen if a user enters invalid input (e.g., negative numbers and 0 
instead of positive numbers).
Practice(s): Testing and Refining Computational Artifacts: 6.1

2-AP-18 6-8

Distribute tasks and maintain a project timeline 
when collaboratively developing computational 
artifacts.

Algorithms & 
Programming Collaborating

Teamwork and Project Management Strategies
Module 5- Navigating a Digital World
Github

Collaboration is a common and crucial practice in programming 
development. Often, many individuals and groups work on the 
interdependent parts of a project together. Students should assume pre-
defined roles within their teams and manage the project workflow using 
structured timelines. With teacher guidance, they will begin to create 
collective goals, expectations, and equitable workloads. For example, 
students may divide the design stage of a game into planning the 
storyboard, flowchart, and different parts of the game mechanics. They 
can then distribute tasks and roles among members of the team and 
assign deadlines.
Practice(s): Collaborating Around Computing: 2.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-AP-19 6-8

Document programs in order to make them easier 
to follow, test, and debug.

Algorithms & 
Programming Communicating

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Writing Functions
for Loops
Creating functions using Void

Documentation allows creators and others to more easily use and 
understand a program. Students should provide documentation for end 
users that explains their artifacts and how they function. For example, 
students could provide a project overview and clear user instructions. 
They should also incorporate comments in their product and 
communicate their process using design documents, flowcharts, and 
presentations.

Practice(s): Communicating About Computing: 7.2

2-CS-01 6-8

Recommend improvements to the design of 
computing devices, based on an analysis of how 
users interact with the devices.

Computing Systems Computational Problems

Module 5- Cybersecurity Navigating the Digital World

The study of human–computer interaction (HCI) can improve the design 
of devices, including both hardware and software. Students should make 
recommendations for existing devices (e.g., a laptop, phone, or tablet) or 
design their own components or interface (e.g., create their own 
controllers). Teachers can guide students to consider usability through 
several lenses, including accessibility, ergonomics, and learnability. For 
example, assistive devices provide capabilities such as scanning written 
information and converting it to speech.
Practice(s): Recognizing and Defining Computational Problems: 3.3

2-CS-02 6-8

Design projects that combine hardware and 
software components to collect and exchange data.

Computing Systems Creating

Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Collecting and exchanging data involves input, output, storage, and 
processing. When possible, students should select the hardware and 
software components for their project designs by considering factors 
such as functionality, cost, size, speed, accessibility, and aesthetics. For 
example, components for a mobile app could include accelerometer, 
GPS, and speech recognition. The choice of a device that connects 
wirelessly through a Bluetooth connection versus a physical USB 
connection involves a tradeoff between mobility and the need for an 
additional power source for the wireless device.
Practice(s): Creating Computational Artifacts: 5.1

2-CS-03 6-8

Systematically identify and fix problems with 
computing devices and their components.

Computing Systems Testing

Module 8- Writing Your First Program
Module 9- Moving Your Robot
Module 10- Introduction to Engineering
Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

Since a computing device may interact with interconnected devices 
within a system, problems may not be due to the specific computing 
device itself but to devices connected to it. Just as pilots use checklists 
to troubleshoot problems with aircraft systems, students should use a 
similar, structured process to troubleshoot problems with computing 
systems and ensure that potential solutions are not overlooked. 
Examples of troubleshooting strategies include following a 
troubleshooting flow diagram, making changes to software to see if 
hardware will work, checking connections and settings, and swapping in 
working components.
Practice(s): Testing and Refining Computational Artifacts: 6.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-DA-07 6-8

Represent data using multiple encoding schemes.

Data & Analysis Abstraction

Activity M95
Using the Camera
Advanced Camera Code

Data representations occur at multiple levels of abstraction, from the 
physical storage of bits to the arrangement of information into organized 
formats (e.g., tables). Students should represent the same data in 
multiple ways. For example, students could represent the same color 
using binary, RGB values, hex codes (low-level representations), as well 
as forms understandable by people, including words, symbols, and 
digital displays of the color (high-level representations).
Practice(s): Developing and Using Abstractions: 4

2-DA-08 6-8

Collect data using computational tools and 
transform the data to make it more useful and 
reliable.

Data & Analysis Testing

Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter
Using the Camera
Advanced Camera CodeAs students continue to build on their ability to organize and present 

data visually to support a claim, they will need to understand when and 
how to transform data for this purpose. Students should transform data 
to remove errors, highlight or expose relationships, and/or make it easier 
for computers to process. The cleaning of data is an important 
transformation for ensuring consistent format and reducing noise and 
errors (e.g., removing irrelevant responses in a survey). An example of a 
transformation that highlights a relationship is representing males and 
females as percentages of a whole instead of as individual counts.
Practice(s): Testing and Refining Computational Artifacts: 6.3

2-DA-09 6-8

Refine computational models based on the data 
they have generated.

Data & Analysis Creating, Abstraction

Module 11- Using a Servo
Module 12- Using Multiple Servos
Module 13- Introduction to Variable
Module 14- Digital Sensors
Module 15- Analog Sensors
Module 16- Motor Position Counter

A model may be a programmed simulation of events or a representation 
of how various data is related. In order to refine a model, students need 
to consider which data points are relevant, how data points relate to 
each other, and if the data is accurate. For example, students may make 
a prediction about how far a ball will travel based on a table of data 
related to the height and angle of a track. The students could then test 
and refine their model by comparing predicted versus actual results and 
considering whether other factors are relevant (e.g., size and mass of 
the ball). Additionally, students could refine game mechanics based on 
test outcomes in order to make the game more balanced or fair.
Practice(s): Creating Computational Artifacts, Developing and Using 
Abstractions: 5.3, 4.4

2-IC-20 6-8

Compare tradeoffs associated with computing 
technologies that affect people's everyday activities 
and career options.

Impacts of 
Computing Communicating

Module 5- Cybersecurity Navigating the Digital World

Advancements in computer technology are neither wholly positive nor 
negative. However, the ways that people use computing technologies 
have tradeoffs. Students should consider current events related to broad 
ideas, including privacy, communication, and automation. For example, 
driverless cars can increase convenience and reduce accidents, but 
they are also susceptible to hacking. The emerging industry will reduce 
the number of taxi and shared-ride drivers, but will create more software 
engineering and cybersecurity jobs.
Practice(s): Communicating About Computing: 7.2



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-IC-21 6-8

Discuss issues of bias and accessibility in the 
design of existing technologies.

Impacts of 
Computing Inclusion

Module 5- Cybersecurity Navigating the Digital World

Students should test and discuss the usability of various technology 
tools (e.g., apps, games, and devices) with the teacher's guidance. For 
example, facial recognition software that works better for lighter skin 
tones was likely developed with a homogeneous testing group and could 
be improved by sampling a more diverse population. When discussing 
accessibility, students may notice that allowing a user to change font 
sizes and colors will not only make an interface usable for people with 
low vision but also benefits users in various situations, such as in bright 
daylight or a dark room.
Practice(s): Fostering an Inclusive Computing Culture: 1.2

2-IC-22 6-8

Collaborate with many contributors through 
strategies such as crowdsourcing or surveys when 
creating a computational artifact.

Impacts of 
Computing Collaborating, Creating

Teamwork and Project Management Strategies
Github

Crowdsourcing is gathering services, ideas, or content from a large 
group of people, especially from the online community. It can be done at 
the local level (e.g., classroom or school) or global level (e.g., age-
appropriate online communities, like Scratch and Minecraft). For 
example, a group of students could combine animations to create a 
digital community mosaic. They could also solicit feedback from many 
people though use of online communities and electronic surveys.
Practice(s): Collaborating Around Computing, Creating Computational 
Artifacts: 2.4, 5.2

2-IC-23 6-8

Describe tradeoffs between allowing information to 
be public and keeping information private and 
secure.

Impacts of 
Computing Communicating

Github
Module 5- Cybersecurity Navigating the Digital World

Sharing information online can help establish, maintain, and strengthen 
connections between people. For example, it allows artists and 
designers to display their talents and reach a broad audience. However, 
security attacks often start with personal information that is publicly 
available online. Social engineering is based on tricking people into 
revealing sensitive information and can be thwarted by being wary of 
attacks, such as phishing and spoofing.
Practice(s): Communicating About Computing: 7.2

2-NI-04 6-8

Model the role of protocols in transmitting data 
across networks and the Internet.

Networks & the 
Internet Abstraction

Module 4- Computer Communication

Protocols are rules that define how messages between computers are 
sent. They determine how quickly and securely information is 
transmitted across networks and the Internet, as well as how to handle 
errors in transmission. Students should model how data is sent using 
protocols to choose the fastest path, to deal with missing information, 
and to deliver sensitive data securely. For example, students could 
devise a plan for resending lost information or for interpreting a picture 
that has missing pieces. The priority at this grade level is understanding 
the purpose of protocols and how they enable secure and errorless 
communication. Knowledge of the details of how specific protocols work 
is not expected.
Practice(s): Developing and Using Abstractions: 4.4



New Mexico Standards KIPR Curriculum
Identifier: Grade: Standard: Concept: Practice(s): Module

2-NI-05 6-8

Explain how physical and digital security measures 
protect electronic information.

Networks & the 
Internet Communicating

Module 4- Computer Communication

Information that is stored online is vulnerable to unwanted access. 
Examples of physical security measures to protect data include keeping 
passwords hidden, locking doors, making backup copies on external 
storage devices, and erasing a storage device before it is reused. 
Examples of digital security measures include secure router admin 
passwords, firewalls that limit access to private networks, and the use of 
a protocol such as HTTPS to ensure secure data transmission.
Practice(s): Communicating About Computing: 7.2

2-NI-06 6-8

Apply multiple methods of encryption to model the 
secure transmission of information.

Networks & the 
Internet Abstraction

Module 4- Computer Communication

Encryption can be as simple as letter substitution or as complicated as 
modern methods used to secure networks and the Internet. Students 
should encode and decode messages using a variety of encryption 
methods, and they should understand the different levels of complexity 
used to hide or secure information. For example, students could secure 
messages using methods such as Caesar cyphers or steganography (i.
e., hiding messages inside a picture or other data). They can also model 
more complicated methods, such as public key encryption, through 
unplugged activities.
Practice(s): Developing and Using Abstractions: 4.4


