

Roger D. Clement (rclement@kipr.org)
Carol Goodgame (cgoodgame@kipr.org)
Steve Goodgame (sgoodgame@kipr.org)
Elementary Students Debugging Practical Text-based Code
KISS Institute for Practical Robotics

Elementary Students Debugging Practical Text-based Code

Abstract

The understanding that today’s students need to acquire the skill of writing code to be
competitive and successful in their future career is well understood. There are many
options for learning to write code and because of the oft cited fear of frustrating teachers
with no experience and their students with syntax, debugging and compile issues, graphical
programs are often used. This paper looks at the ability of elementary educators and their
students currently participating in the Junior Botball Challenge program to successfully
debug text-based code. Educators, (n=231) were given pre and post surveys and students (n
=640), were randomly assigned to debug programs that had one of 4 common syntax
errors. The self-reported efficacy of the educators and the success rates of the student’s
debugging indicate that younger students and elementary educators can easily and
successfully debug text-based code given proper motivation and experiences.

mailto:sgoodgame@kipr.org

ections:

Elementary Students Debugging Practical Text-based Code

1 Introduction

With the spread of computer science focused programs such as code.org’s Hour of Code and
the work of former President Obama’s CSForAll initiative, many educators and school
administrators are now understanding the importance of teaching computational thinking
skills to their students. This often gets translated into teaching their students to
“code”. There are numerous options to teach coding including the work by code.org, girls
who code, and Khan Academy. There is also a large amount of robotics and other devices to
help including; FLL, Junior Botball Challenge, Dash and Dot, and Fit Bit. Most of these
programs rely on a graphical programming interface with the idea of making the entry point
to programming easier for younger students, however it is well understood that at some
point to advance in programming the switch to a text-based language must occur.
With this in mind, a heated and oft misplaced argument stands at the forefront of
elementary computer education. At what age can students successfully and meaningfully
code in a text-based language? It was this perceived floor that was the driving force for
innovation of the Scratch graphical programming language, (Resnick, 2009) Recent
published works done by Miller(2017) and anecdotal research completed by the KISS
Institute for Practical Robotics seem to show a floor for children being able to learn to
program in a text-based language being far lower than what some have perceived. It has
been stated that a great stumbling block in beginning students and educators learning to
code in a text-based language is due to the frustration in dealing with syntax and
compilation errors (Berners-Lee,2017). It is our intent with this work to determine at what
frequency children, grades 2-6, can debug common syntax and compiler errors after they
are comfortable with a given text-based development environment.

2 Previous Work

The Junior Botball Challenge program is a sustainable Computer
Science (CS) and engineering, design-focused STEM program produced
by the KISS Institute for Practical Robotics a 501(c)(3) nonprofit
organization. This program is designed to support and empower
elementary and middle school educators in teaching their classroom
students coding and computational thinking concepts coupled with

engineering design concepts using robots as a manipulative. Currently the program is being
implemented in 354 partner schools (47% in-class) impacting approximately 4,000
students and 800 educators in 13 states. International participation includes schools in
Austria, Canada and China.

The JBC strategy revolves around three main components:
educator friendly reusable robotics equipment, a standards-
aligned curriculum and professional development. The inquiry-
based curriculum has formative assessments, with accompanying
evaluation rubrics that are performance-based and built into each
of the lessons and accompanying activities. Summative
assessments include the completion of performance-based
challenges, where student groups demonstrate their mastery of the
concept. Many times these are publicly held challenge day events,
where completion buttons are awarded to students for each concept “challenge” mastered.

The program engages classroom teachers that have no experience teaching programming
and CT concepts. In a 2016-2017 school year post survey of participating Oklahoma City

teachers (n = 231), 94.7% indicating they can easily
debug student’s programs that do not compile.
This evidence supports the idea that elementary
teachers with zero experience debugging can easily
learn this skill and teach it to their students. This is
not surprising, as the curriculum supports the early
development of debugging skills by having

educators lead the students in the creation of
their own “Common Debugging Error” charts
such as the one in Figure 1. Additionally,
teachers are encouraged to engage in
instructional strategies such as anchor charts
(Figure 2).

3 Using the JBC Challenge as a data Collection Tool
Each JBC event that is hosted by the KISS Institute
has one event that the coordinator calls a “mystery
challenge”. This challenge is unknown to teams and
teachers prior to showing up the day of the challenge
event. Typically these events are of moderate to
higher difficulty and the student teams must solve
the problem or complete the task if they would like
the mystery challenge button. It was determined that
an easy way to collect data on students
fixing compiler errors would be to use five separate
and individual stations set up as a mystery challenge
at two of the larger events. The four most common

errors reported by participating educators were then assigned a number (1-4) at random
and a protocol and basic program was written that would allow these compiler errors to be
observed individually, and as a whole. The KIPR Software Suite IDE provides information to

Figure 1. Common Debugging Error Chart provided for teachers and students in the
curriculum. Teachers are given strategies to help students help students generate
their own guide

Image 2. Students take part in a JBC event hosted in the Oklahoma City metro area.
Events have been as small as a single school and as large as 1,200 students.

Image 1. The JBC 3-prong approach

Figure 2. Anchor chart socially constructed in an Idaho classroom. A teacher with
zero prior experience coding led the activity

The common code for each of the stations:
The error that will correspond to each station is as follows:
Station 1: The semicolon will be removed from the end of line 8

Station 2: “msleep” in line 8 will be replaced with “mslep”

Station 3: An argument bracket will be missing from the end of
line 8

Station 4: A comma will be placed between the 2 and the 0 in
line 8.

Students will be in a line and will enter the first open station
when they come to the front of the line.(hence, possibility to end up with a different number of responses on each trial).

Proctor will escort student to the open station where the student will begin.

When a student is completed, whether successful or not, the instructor will record their information.

the students when programs do not compile, which includes references to the line and
column where the error occurred.

The basic program and the intentional mistakes are outlined in Figure 3.

4 Data

Error to be
debugged

Attempts by
students (n=)

Correct
responses

rf as %
Correct

1 61 51 83.6

2 89 81 91.0

3 55 47 85.5

4 74 69 93.2

Sum 279 248 88.9

Error to be
debugged

Attempts by
students (n=)

Correct
responses

rf as %
Correct

1 95 84 88.4
2 115 110 95.7
3 75 68 90.7
4 76 70 92.1

Sum 361 332 92.0

It is important to note several small differences in these two trial groups:

Image 3. A screenshot taken of a common compilation error in the KIPR Software Suite IDE. This is a sample error message a student would receive if they were to misspell a function name.

Figure 3. Protocol and information sheet for administration of the “Don’t Bug Me”

Table 1: Data from the “Don’t Bug Me” station at the OKC Dell JBC Event on April 15th, 2017

Table 2: Data from the “Don’t Bug Me” station at the MCN Invitational Event on April 22nd, 2017

The moderator for the first event did not put a time limit on any of the student participants.
Additionally, these students were told that there was a compiling error that they would
need to fix and then successfully compile.
The moderator for the second event put a 5-minute time limit on each of the students (kept
by a stopwatch). Students in this event were told that there was “one error in the program”
that they needed to fix.

5 Analysis

The (n=) value for each of these independent studies gives us a relatively large sample size
of elementary students who have taken part in the JBC program. There is a minimal amount
of statistical difference in mean % correct (88.44% and 91.78% respectively). This
difference can be attributed to differences in moderator presentation of the test (informing
students that there was only 1 error) or differences in the amount of in-class
implementation of the material. It is our speculation, based on conversation and
observation, that a larger percentage of teachers in attendance at the MCN Invitational were
doing an in-class implementation of the program. Contrary to one of our unstated research
hypothesis, there is no significant difference in student correctness based on the type of
debugging error. Both sets of data showed that students were able to debug the misspelled
function name the fastest and were slowest in correcting the error presented as a missing
argument bracket. Exact times required to complete the debugging were not taken for this
data.

6 Conclusions

The data provides evidence that elementary students, given the proper scaffolding and
developmentally appropriate instruction, can easily debug basic compiling errors in a text-
based language. The attention to detail and persistence on task (Common Core Math
Practices) required to code and debug in a text-based language are excellent skills for a
student to acquire. These cognitive processes may not be as much of a hindrance to learning
to program in a text-based language at an early age as many people have indicated.

7 Implications for future work

The findings of this study and statistical verification of the authors’ previous observations
have opened the door to more research questions. Among these questions include a
determination if there is a correlation between a student’s ability to debug increasingly
complex errors and the total time spent coding in a classroom setting. Additionally, the
authors would like to develop practical solutions to aid teachers in their quest to maximize
students’ abilities in this area in the least amount of time.

References

D.P. Miller, R. Clement, C. Goodgame, and S. Goodgame. Elementary students

programming in C to make their robots do their bidding. In Submitted to the CLAWAR

Workshop on Education and Robots: available now

http://www.amerobotics.ou.edu/IRL/Papers/ dpm-clawar17-sub.pdf, September 2017.

M. Resnick, J. Maloney, A. Monroy-Hernandez, N. Rusk, E. Eastmond, K. Brennan, A.

Millner, ´ E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch: programming for all.

Communications of the ACM, 52(11):60–67, 2009.

Berners-Lee, Tim. Learnable Programming: Blocks and Beyond.
https://vimeo.com/216045469

