This example would score 74 points out of 100.

P2 Upload a Code Review Document

’Introduction:‘

This is our first year to play Botball, so we are focusing on the programming. Our
robot is a Create with a fixed plow on the back. We intend to push the game pieces
around on the board and into the scoring areas. We are mostly using dead
reckoning to drive our robot.\ The code being reviewed is our main program that
moves the Create|Ted and Barney wrote all of the code and are the only people on

- Flaﬂable—ﬁames—a%e—deseﬁpbweﬂ-nd-eeweﬁ\s%ée— Done - Ted

3/5/12 | 8. Checklist Item 3
- }Ne%amed—na—mmeemas%a&%&e’ehe%tha&@rkeﬂz - Done - Ted [comment [A9]:
3/5/12‘ 9. Checklist item 4

~(comment [A4]:

[comment [A7]:

Comment [Al]:
1. Clearly labeled Introduction

[comment [A2]:
L 2. Brief overview of code function

Comment [A3]:
3. No Date of Review (-2 points)

L

4. Who wrote the code and who performed
review

Comment [A5]:
5. Clearly labeled Best Practices Checklist

Comment [A6]:
6. Checklist item 1

L

L

7. Checklist Item 2
Comment [A8]:

L

L

- Femmeﬂ%&de—net—eent&m—mwsed—eede\— Done - Barney 3/6/12

General Code Analysis

We do not do any error checking detection, or have any recovery logic in our code.

We could improve our code by adding recovery logic, and logic at all for that matter.
There are some cases where we could add loops, and logic, but up until now, we
were just trying to get something to work. Between now and the tournament we
hope to add some logic and the associated recovery logic, so we do not get stuck in
infinite loops[. The easiest way to do this is with loop counters, so all of our loops
will have this recovery logic in it.\

|

Since our code is mostly driving functions, it is pretty easy to understand and reuse.
We have written functions for driving straight a set distance in inches, and for
turning to given degree measurements. These functions are properly named and
easy to use. Reuse is easy, since it has become a very high level program.

This example would score 74 points out of 100.

“(‘comment [A10]:

(comment [A11]:

N\ | requirements code does not meet(-6 points)

L 14. Clearly labeled Reliability (-2 points)
| Comment [A15]:

10. Checklist item 5

L

11. Checklist item 6 (-2 points)

Comment [A12]:
12. Checklist item 7

fComment [A13]:
13. Discussion on what checklist

L

[comment [A14]:

L 15. Discussion on error detection

Comment [A16]:
16. How Reliability can be improved

Comment [A17]:
17.Clearly labeled Maintainability(-2 points) |

J
4

Comment [A18]:
18. Is code easy to understand, modify and
reuse

This example would score 74 points out of 100.

We could improve maintainability by comments indicating when and why we added
or removed parts of the code. We could also write bigger functions that do more

and use logic to simplify our code. That will make it easier to update and maintain
at the tournament.

|

Currently our code does effectively perform the task assigned. Mle go out and
bulldoze the poms back to our starting box. This is all done in a matter of seconds. \
We are so efficient at the moment, that we are looking to add some more
functionality to our robot.

We have to be careful when adding on to our robot, that we do not compromise the
high efficiency that we already have. [[f we cannot find a way to score more points
quickly and easily then we will go back to our current code. Itis better to score a
few points well, then to maybe score a lot. \

I

This example would score 74 points out of 100.

Comment [A19]:
19. How maintainability can be improved

Comment [A20]:
| 20. Clearly labeled Effectiveness (-2 points)

Comment [A21]:
21. Does code effectively and correctly
kperform task

Comment [A22]:
| 22. Improving effectiveness of code

Comment [A23]:
23. Excerpt of code used in General Code
kAnalysis section (-5 points)

- [comment [A24]:

24. Source code or pseudocode used as
example for suggestion for improvement in
General Code Analysis section (-5 points)

