
Quick Start
This is a quick start to moving the robot.  It will get your students 

interested and ready to go.  



KIPR Wallaby Controller Guide

2 Servo
Motor Ports

(Port # 0 & 1)

2 Motor Ports
(Port # 0 & 1)

10 Digital
Sensor Ports
(Port # 0 - 9)

6 Analog 
Sensor Ports
(Port # 0 - 5)

2 Motor Ports
(Port # 2 & 3)

2 Servo
Motor Ports

(Port # 2 & 3)

Color Touch Screen

Power Switch

USB
Micro HDMI

Power (external battery 
connection)

Download port 
(micro USB)



• For charging the controller’s battery, use only the power supply which 
came with your controller.
• It is possible to damage to the battery from using the wrong charger 

or  from too deep a discharge!

• The standard power pack is a lithium iron phosphate (LiFe)  battery, a 
safer alternative to lithium polymer batteries.  The safety rules 
applicable for recharging any battery still apply:
• Do NOT leave the unattended while charging.
• Turn the Wallaby off or unplug it from the battery while charging
• Charge in a cool, open area away from flammable materials.

Charging the Controller’s Battery



Important Information

All connections are as follows:

• Yellow to Yellow

• White small to White small (to the charger, may be white to black)

• Black to Black



Turn on your wallaby

Power Switch

Wa
ll
ab
y

Turn on the Wallaby with the black switch on the side. Wait 5 
minutes before it’s ready to use. 



Connect to Your Wallaby by Wifi

6

1. Click about on your controller. 

2. Every wallaby has a unique number/name that will appear in your Wi-Fi list.

3. Look at the Wifi information and find the SSID: that is your wallaby number 

and wallaby password.
4. Connect the Wallaby to your device via Wi-Fi (go to your Wifi settings on 

your device).

5. Click on your wallaby number, and add your password. .  You will see a blue 

LED

Light that indicates that you waited 5 minutes and you will hear a voice say 

“Welcome”.

Your password will may not work if you have not waited the 5 minutes. 

● Wifi not recommended for Challenge Day or Tournament



1. Launch your web browser (such as Chrome or Firefox).
2. Copy this IP address into your browser’s address: 

192.168.125.1:8888

3. The KISS Software Suite will now come up in your browser.
4. You may use a computer, tablet or even a smart 

phone.

Accessing  KIPR Software Suite
(using Wi-Fi)

IP address Port #



The KIPR Software Suite 
will appear.



Why Do We Need the KIPR Software 
Suite?

Computers only understand machine language (stream of bytes), which they can then read 
and execute (run).

Humans on the other hand, don’t do well with machine language.

Blah, 
Blah, 
Blah, 
Blah, 

?

9



Humans Need an Interpreter

Humans have created languages with funny names like; C, C++, JAVA and
Python, that allow them to write “source code” which they can understand and 
edit.   
(Examples of common computer programming languages and their uses.)

This source code is then compiled (translated) into machine language that the 
computer can understand and 
execute (run).

CompilerProgramming 
Language

Machine 
Language

Translates

10

https://drive.google.com/open?id=14tYrLzKsGAjEYTJfVz0TKL9N5xr8_6fgJ_Gt5l5qhjU


Click KISS IDE 
IDE =Integrated 
Development Environment 

This is the KIPR Software Suite 
is a software application that 
makes it easy for you to write and 
edit your source code, debug it 
(look for and correct mistakes) 
and compile (translate) it. 

The KIPR Software Suite allow 
you to develop source code with 
the C programming language.

Programming Language =
Language humans understand 
that can be turned into machine 
language



1. Under Project Explorer, you have options to add 
a user by clicking the + sign, or select your folder.

2. Add a New User (+),  
3. User name =“Student name and folder” .  This is 

similar to a folder you will put all your different 
projects into. Not Special characters or “, ‘, .,etc.

Sarah Folder

Click 
Create

+

Adding a Project



1. Click “+Add Project”.
2. You are adding a 

project to your folder.
3. Name the new project

Folder

Add a Project



Give your project a descriptive name
• Do not put any special characters or periods, etc. on it. 

Name your project

Click Create
Hello World



This is Your Template



Learning About The C Template: 
Hello, World!

Blocks of Code

int main()
{

printf("Hello, World!\n");
return 0;

}

Block of code



Learning About the Template
The KISS IDE contains a large library of functions you can use to program your 
robots.
A function is like a title to an instruction book. When you call the function it does all of 
the commands in the book. 

A “function” defines a list of actions to take.
A function is like a recipe. When you “call” (use) the function,

the program follows the instructions/recipe. 

A      clean_house() function could mean vacuum, dust, mop, change the 
linens, wash the windows, etc… all the commands specified in the function are 
executed.

#include <kipr/botball.h>

int main()
{

printf("Hello, World!\n");
return 0;

}

This is the “main function”.
When you run your program, 
the main function is executed.

KIPR Library



Until you are familiar with the functions that you will be using while 
programming , use your “Function Tent” for easy reference. Copy and paste is 
also very helpful.

printf(“text\n”); //Prints text to display
motor(port#, % power); //Turns	motor	on	at	%	power	specified
msleep (# milliseconds); //Program	waits	specified	number	of	
milliseconds
ao();//All	off,	turns	all	motor	ports	off
enable_servos();//Turns	servo	ports	on
set_servo_position(port#, position);//Moves	servo	in	specified	port	to	a	set	position
disable_servos (); //Turns	off	servo	ports
digital(port #); //Refers	to	a	specific	digital	port	#
analog (port #); //Refers	to	a	specific	analog	port	#

Functions



Compile Your Program “Hello World”

Compiled -- translated from a programming 
language to a machine language



Compilation succeeded will appear if the source code is 
correct!

Source Code = name for code written in programming language  
C, C++, Java, Python = names of programming languages



1. Press (touch) the “Programs” button on the KIPR 
Wallaby.

2. This will take you to a list of programs currently on your 
Wallaby.

Running your Program on Your Robot



1. Select (touch) the name of the program you want to run Note: in the example 
below, this is “Hello, World.c”.
• Press (touch) the “Run” button on the Wallaby.

Running your Program on Your Robot



1. Go to the robot (wallaby).
2. The phrase “Hello, World!” will appear on your Wallaby screen.

Running your Program on Your Robot



Connecting Your KIPR Wallaby Motor Ports
1. Find the 4 motor ports.
2. Locate labels above the motor ports

24

Drive motors 
have a 2 prong 
plug

Motor ports 0, 1, 2, and 3 

labels 1. Find your motors. The motors 
have two-prongs on the plug 
end and have a double wire (2 
wires)

2. Plug your motor plugs in port 
0 and 3



Motor Direction
Motors have  2 prongs on the plug 

• There is no marking for left or right on the motor wire
• You can plug these in two different ways

• Motors rotate in the direction that the electricity (electrons) move through 
them. One direction is clockwise  motor rotation and the other direction is 
counterclockwise motor rotation

*You want your motors going in the same direction,
otherwise your robot will go in circles!

1 2 2 1



Motor Port & Direction Check
• There is an easy way to check this!

o Manually rotate the tire (turn it with your hand) and you will see a LED 
light up by the motor port (port # is labeled on the board)
• If the LED is green it is going forward
• If the LED is red it is going backwards

• Using the manual tire rotation trick, check the direction and 
port #’s of your motors
• If one is red and the other green unplug and  turn one 

motor plug 180° and plug it back in
• The lights should both be green if the robot is moving  

forward



Lesson: Using the motor()Function

Activity:
There are several functions for controlling motors, we will begin with motor().
Look at the program below for an explanation of how to use the motor function. 

motor(0,100); //Turns on motor port 0 at 100% power. You can 
select any power level up to 100%.

motor(3,100); //Turns on motor port 3 at 100% power. You 
can select any power level up to 100%

msleep(2000);// time in milliseconds
ao(); //Turns off all motors

Questions:
1. What motor ports are identified in the program? 
2. What motor ports are you plugged into? 
3. How many different motor ports are available to plug into?
4. Provide three examples of the motor function using different motor 

ports and powers.

Goal:  Introduction to motor function. 

27

motor(0,100);

Port     Power



Speed of Executing Code

28

• The wallaby controller executes the program (code) from top to bottom 
and goes to the next line faster than a blink of your eye.

• At over  800MHz the controller is executing  ~800 Million lines of 
code/second!

• To control a robot you must give the function (command) TIME to run on 
the robot.

• To do this, we use the built-in function called msleep(); refer to learning C 
language for a review if needed.



Goal : Write a program for the wallaby that drives the Robot forward at 100% 
power for two seconds, and then stops.

1. Create a new project in your folder,  called Move.
2. Task Analysis: What is the program supposed to do?

Pseudocode (Task Analysis)
• Drive forward at 100%.
• Wait for 2 seconds.
• Stop motors.
• End the program.     
1. Type your code, using the motor(); msleep(); and ao(); functions
2. Compile your program. 
3. Run your program on your wallaby. 

– Did it run as you expected?

Let’s make the Robot Move!

29



Solution

int main()
{
printf(“Sarah Robot Move!\n”);

motor(0,100); 
motor(3,100); 
msleep(2000); 

ao(); 
return 0;        

}
What can you change to make it go a longer distance? 
Play with the distance. Did it drive straight. 

30



1. Press (touch) the “Programs” button on the KIPR 
Wallaby.

2. This will take you to a list of programs currently on your 
Wallaby.

Running your Program on Your Robot



1. Select (touch) the name of the program you want to run Note: in the example 
below, this is “Hello, World.c”.
• Press (touch) the “Run” button on the Wallaby.

Running your Program on Your Robot



Running Your Program 

1. Highlight the program you want to run, in this case, “Sarah drive 1”. 
2. Place your robot on the floor and  then push the “Run” button.

Did you robot go straight? .

33

Move



Driving Straight
Remember your # line, positive numbers go forward and negative numbers go 
backwards.

Driving Straight - it is not easy to drive a robot in a straight line.
• Motors are not exactly the same
• The tires may not be aligned well
• One tire has more resistance, etc.

You can adjust this by slowing down and speeding up the motors.
Making Turns

• Have one wheel go faster or slower than the other
• Have one wheel move while the other one is stopped (friction is less of a factor 

when both wheels are moving)
• Have one wheel move forward while the other is moving backwards

-5  -4  -3  -2  -1  0  1  2  3  4  5

ForwardReverse

Student 

34



Drive your robot straight 

35

Use mat B and drive down the center line.  Your robot needs to straddle the 
dotted line. 
Adjust your wheel powers until straight. 



Learning to Move Backwards
1. If positive power moves the robot forward, what do you have to do to 

make the robot move backwards?

motor(0,100);

motor(3,100);

Have the students use the: Think Pair Share Strategy
2. Next slide will provide the solution.

36

Power 

https://k20center.ou.edu/instructional-strategies/


Backwards

motor(0,-100);
motor(3,-100);
msleep(2000);

Negative numbers in the 
power argument will rotate the 
wheels backwards



Drive your robot  backwards and straight 

38

Use mat B and drive backwards down the center line.  Your robot needs to 
straddle the dotted line. 
Adjust your wheel powers until straight. 



Touch the Can on Circle 9

Open a new project,  name it, “Touch the Can”.
Use mat A
The robot must:
1.Go out and touch the can in circle 9
2. Stop - ao();
3. Pause for 2 seconds (msleep)
4. Go in reverse to start line. 

Starting line



Sample Coding

int main ()
{

printf(“Sarah Backwards”);

motor(0,100); // forward
motor(3,100); 
msleep(3000);

motor(0,-100); // back
motor(3,-100); 
msleep(3000);
return 0;

}

40



41

move forward to can 6

move backwards until 
you cross starting line

drive 3

1 2

Notice that 
the drawing 
steps match 
the steps.

Touch the can on 6 and return to finish lineSample for 
Learning to 

Drive 3

Shut motors down

3



Assessment
Assessment 1: Tag – You’re It

Setup: Use Surface-A.  Place a 12oz empty soda can in circle 9.

Desired Outcome: The robot will drive to the can in circle 9, touch it, and return to the 
starting area.

Limitations:
1. All robots must be autonomous (no remote control, wireless communication, or touching 

the robot after starting a run).
2. The robot must start completely behind the vertical projection of the inside of the start 

line.
3. Must be able to tell that the can was touched by the robot, either visually (the can 

moved) or audibly (the robot touching the can made a noise).
4. The can must not tip over and some part of the can must remain in the circle, or that 

team does not complete that run.

Completion: When the robot touches the can and returns behind the starting line.

Extra Optimization: Students try to get lowest time to go out, touch the can and return.

42



Assessment
Assessment 1: Tag – You’re It

Setup: Use Surface-A.  Place a 12oz empty soda can in circle 9.

Desired Outcome: The robot will drive to the can in circle 9, touch it, and return to the starting 
area.

Limitations:
1. All robots must be autonomous (no remote control, wireless communication, or touching 

the robot after starting a run).
2. The robot must start completely behind the vertical projection of the inside of the start line.
3. Must be able to tell that the can was touched by the robot, either visually (the can moved) or 

audibly (the robot touching the can made a noise).
4. The can must not tip over and some part of the can must remain in the circle, or that team does 

not complete that run.

Completion: When the robot touches the can and returns behind the starting line.

Extra Optimization: Students try to get lowest time to go out, touch the can and return.

43



Learning to Turn
by Changing Motor Power Only

1. Open Your Folder! Create a new project in your folder called  “Turns”.
2. On the template replace “Hello World” with the name of your new 

project,  Turns. (you can do this every time you have a new project). 
3. Decrease the power on motor port 3 to 70%, compile and run. Make 

observations.
motor (0,100); 
motor (3,70);
msleep (3000);

2. Decrease the power on motor port 3 to 10%, compile and run. Make 
observations. Keep the msleep constant (3000).
4. Repeat above steps using the following power in motor port 3;

0%, 20%, 55%, -50%, experiment with different powers. 
Make observations.

44



Learning to Turn
by Changing msleep Only

1. Decrease the power on motor port 3 to 50%,  compile and run. Make 
observations.

motor (0,100); 
motor (3,50);
msleep (3000);

2. Increase the msleep time to 4500. Make observations
3. Decrease the msleep time to 1000. Make observations.
4. Increase the msleep time to 9000. Make observations. 
5. Decrease the msleep time to 500. Make observations. 

45



Activity to Make Circles
Changing the Power and msleep

1. Open Your Folder! Create a new project in your folder called 
“Circles”.

2. On the template replace “Hello World” with the name of your new 
project, “Name” Circles. (you can to do this every time you have a 
new project). 

3. Place a chair in the middle of the room. Type and compile a program that 
will move the robot in a large circle around the chair. You can not touch the 
chair.
a. You should be able to create the program with only one set of 

motor(), msleep(), and ao() functions.
4. Place a small object the size of a kleenex box in the middle of the room. 

Type, compile and run a program that will move the robot in a tight circle 
around the object. 
a. You should be able to create the program with only one set of 

motor(), msleep(), and ao() functions.

46



Learning About Comments 
(Pseudocode)

1. Read and discuss with a partner this slide and the next slide to understand Pseudocode.
Pseudocode means "false code". 
Pseudocode can be used to comment on what you expect your program to cause your robot to do, but that 
might not be what it will actually do.

//1. Move forward

//2. Turn Right

//3. Stop

Why would it be important to create 
pseudocode? 



Learning About Comments 
(Pseudocode)

• Comments as pseudocode help you keep track of what is going on in the program.
• You can make a flow chart or list and then convert it to pseudocode.
• To make a comment two slash marks must be typed first: //

Complete Comment: //Prints Hello World to screen
• When you compile the program it will not execute the comment, but you can see it.

Sample Program
int main()
{

printf("Hello, World!\n"); // Prints Hello World to screen
return 0;

}

Why would you 
put a comment 
here?



Add a Comment 

1. Add the //Print Hello world to screen comment to the program
• Just like using a word processing program you can click to set your cursor 

and then use return to make space for the comment. 
• Type the comment into your program. The comment can go on the line 

before the printf function or on the same line as the function.
2. Continue to the next slide.
3. Comments in the program help you keep track of what you are doing.  The 

robot sees the green and is instructed to go to the next line.

int main()
{

printf("Hello, World!\n"); //Print Hello World to screen
return 0;

}

On same line as the function

Go to the next slide



Compile

Watch to see if it Succeeded!

Go to your robot and run the program.  Did it show? NO!



Terms to Understand

o Machine Language -- what the computers understand- Bytes

o Executes -- in terms of a computer running or carrying out the instructions

o Source Code -- name for code written in programming language

o Compiled -- translated from a programming language to a machine 
language

o Programming Language -- Language humans understand that can be 
turned into machine language

o C, C++, Java, Python -- names of programming languages

51



This was a quick start.  You may now go back into the curriculum to Module 5 
Moving Robots and explore. 


