
What is a library?
A library is a collection of precompiled functions that

can store your frequently used routines.

The KIPR library is used in each program that you
use. You don’t have access to alter the KIPR library,
but you can create your own library to really help you
organize your code.

Ever notice the first line of any new “Hello
World” program?

This is how we “include libraries.

Creating Your Own Libraries Within the KIPR Suite
In order to create your
own library, you will
need to access the
KIPR advanced user
interface. Do this by
going to this screen and
clicking the “User
Preferences” button.

Then you have to click on the “Simple” dropdown.

Change It to “Advanced”. Please note, the “Default User” which can be altered to
your individual users at this time through the dropdown.

Now go back into a Hello World program
Look over on the right side, now you
will see “Include Files” and “Source
Files”.

The “Add File” tabs will allow you to
add Source files and Header files.

Let’s Create a Header File
After you click the “Add
File” under the “Include
Files”, you will be able to
name your new (.h) file.

We have called this one
“Drive”, but you can call
it anything you want.

A Library needs books...
Your brand new header file is blank.

What is a header file? A header file is a place to store
function declarations, variables, and constants.

What can we put inside? We can store any variables
that we want to define or the names of functions that
we plan on defining in our source files.

How do we use it in our main program? You will need
to include this file as an include in your source files
(like your main)

Let’s Add A Line That Will Help Always Define a Word
Let’s put in a variable that will always be
the same. We will “define” this. Think
about this as a constant.

Notice the syntax: There is a # before
the word define, then a space, the
constant name, a space and a value. (no
semicolon)

Anytime you use “RTmotor” in a source
file, your computer will see the number 0.
HIT THE SAVE BUTTON!

This will allow you to remove the
number associated with a port and
instead write a mav function as
follows:

mav(RTmotor,500);

If you move the motor to another
port, just change the value in this
header file. Save a lot of time by
changing it one time here, as
compared to changing it everytime
it appears in your main program.

More Books...
Now, let’s add a define for the left motor and
declare that we are going to make a function
for driving forward. (Wouldn’t that be useful)

Functions or variables can be (or should be)
defined or declared in this header file.(.h)

Hint: You can have multiple .h files that can
contain needed information for different
purposes. For instance you could call a .h
file movement, and another one servo, etc.

This is a huge organizational strategy!

Making the Include File Available In Your Main
Program

Click back on your main.c file on the
right side and add the following two
lines of code: (change the word
“Drive” if you named it something
differently)

The include line (line 2) is how you
include a library that is in this project
folder.

Line 5 is using the constant that you
defined in your header file.

Creating A Source File
A source file on the Wallaby can be added to hold all
of your functions. (To further increase your ability to
organize your code.

You can create a source file by hitting the “add file”
button under “Source File” on the right hand side.

Go ahead and create a .c file to hold some of your
custom functions...we will start by defining the
drive_forward() function that was declared in
the previous .h file.

Adding Some Custom Functions
Upon creating your new .c file you should
open up to a blank page. Go ahead and
add the following lines of code so that this
source file will have the benefits of the
KIPR library as well as your custom
created .h file.

After you have done this, see if you can create your own function named
drive_forward() . Give it a shot! A possible solution is on the next page.

Making Your Source File - Maximizing Organization
So, after adding a forward driving
function, your new source folder
may look like this.

You can add the definition of
many of your functions in these
source files.

Remember and Recall...
Your source (.h) files are where your variables and functions are declared.

Your created source (.c) files are where your functions are defined.

Your main.c file (your main source file) is
where you will use the functions, variables, and
constants that you have built. It will be much
better organized with proper use of header(.h)
and source(.c) files.

Possible Pitfalls
You can only define a variable or function 1 time. Trying to do this more than once
will cause a very complex compiler error message.

You can use some of your custom functions inside of other custom functions, but
the order is important in which they appear inside of your files. For instance if a
function is inside of another function, the function that is inside (nested) must
appear above it in the source file.

If you are trying to use a source or header file that is inside of another program
folder, you will have to give the full path.(available on the file menu screen) and
put quotes(“ “) around it instead of carrots(< >). Example:

#include “/home/root/Documents/KISS/Default User/HelloWorld/include/Drive.h”

