
Using Sensors
● Key Concepts:

○ Understand and apply the concepts of using digital and
analog sensors

● Pacing:
○ Over several class periods

Table of Contents

2

Using Sensors (Goals) and standards
Learning About Sensors

Decision Making and Sensors
Smarter Robots
Sensor Functions
Checking Values
What is a Digital Sensor?
The Large Touch Sensor

Understanding the Bump Sensor-Activity 1

Sensor Ports

Plug in Your Touch Sensor

Reading Sensor Values

Check Touch Sensor

Interpreting Values

It’s Dark

Looping

Click on me to return
to Table of Contents

Teacher Hint!

https://drive.google.com/drive/u/1/folders/0B8OwGhy6c2TSQnZwNHlRQ1hrbFk

Table of Contents (cont.)
Understanding while loops

While Statements- Activity 1
While Statements- Activity 2
Drive Until Bump- Activity 3
Bump the Can and Go Home- Activity 4

Pseudocode Flowchart for Bump and Go Home

Smart Claw- Activity 5

Assessments

Learning About Analog Sensors

Analog Sensors

Checking Values

Reading Sensor Values for the Sensor List

ET- Activity 1

ET- Activity 2

ET Information
Check ET Sensor on Link Screen
ET sensor Values
Optical Rangefinder
Learning to Use an Analog Sensor

Table of Contents (Cont.)
Find the Wall ET- Activity 3

Assessment

Reflectance Sensor- Activity 1
Analog Small and Large Top Hat Sensors
Reflectance Sensor Ports
Plug in Your Reflectance Sensor
Reading Your Sensor Values
Understanding the IR Sensor

Find the Black Line- Activity 2

Learning About if Statements
if Statements
Line Following Strategy
Buttons
Understanding while and if

Line Following while using while and if-Activity 1

Tip 1

 Tip 2

Tip 3

Assessment

Rubrics

#

Standards

Goal:
• Students will understand and apply the concepts of using digital and analog sensors
• Students will familiarize themselves with the functions msleep()and motor()
• Students will understand how to move their robots in the following manner: forwards, backwards,

straight, circles, right and left turns
Standards:

Common Core State Standards Math Practices

CCSSMP1: Make sense of problems and persevere in solving them

CCSSMP2: Reason abstractly and quantitatively

CCSSMP4: Model with mathematics

CCSSMP6: Attend to precision

CCSSMP8: Look for and express regularity in repeated reasoning
Next Generation Science and Engineering Practice

1: Asking questions and defining problems
2: Developing and using models
3: Planning and carrying out investigations
4: Analyzing and interpreting data
5: Using mathematics and computational thinking
6: Constructing explanations and designing solution
7: Engaging in argument from evidence obtaining, evaluating, and communicating information

Standards Continued

Standards Continued:
2016 ISTE Standards

Empowered Learner
1c: Students use technology to seek feedback that informs and improves their practice and
to demonstrate their learning in a variety of ways.
1d: Students understand the fundamental concepts of technology operations, demonstrate
the ability to choose, use and troubleshoot current technologies and are able to transfer
their knowledge to explore emerging technologies.

Knowledge Constructor
3d: Students build knowledge by actively exploring real-world issues and problems,
developing ideas and theories and pursuing answers and solutions.

Innovative Designer
4a: Students know and use a deliberate design process for generating ideas, testing
theories, creating innovative artifacts or solving authentic problems.
4b: Students select and use digital tools to plan and manage a design process that considers
design constraints and calculated risks.
4c: Students develop, test and refine prototypes as part of a cyclical design process.
4d: Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with
open-ended problems.

Computational Thinker
5a: Students formulate problem definitions suited for technology-assisted methods such as
data analysis, abstract models and algorithmic thinking in exploring and finding solutions.

Using Sensors
Goals:
• To help students understand how to implement a touch sensor into the design of their

claw.
• To compare and contrast using a touch sensor with a claw to grab an object versus using

no sensor in a claw to grab an object.
• To understand the importance of using while loops and sensors to make a smarter robot.

Standards:

CCSSMP1: Make sense of problems and persevere in solving them, CCSSMP2: Reason
abstractly and quantitatively, CCSSMP4: Model with mathematics, CCSSMP6: Attend to
precision,CCSSMP8: Look for and express regularity in repeated reasoning.

Learning About Sensors

1. Use the Jigsaw strategy to learn about
sensors. Use the following slides;

a. Decision Making and Sensors
b. Smarter Robots
c. Sensor Functions
d. Checking Values
e. What is a Digital Sensor?
f. The Large Touch Sensor

https://k20center.ou.edu/instructional-strategies/jigsaw/

Decision Making
and Sensors

• You should now realize how hard it is to be
consistent with dead reckoning.

• Now we will add decision making and sensors
to make our robots smarter.

Smarter Robots

When you log onto your computer you must enter a password. The program
checks this against a stored value and if it matches, the program opens.

If the password doesn’t match, the program runs a different set of code that
prompts you to try again or even locks you out!

To make a smart robot, we need to check and compare sensor values

Sensor values are either:

• Digital- Returns a value of 0 or 1 (true or false), (touched not touched)

o Sensors include; small touch, large touch and lever

• Analog- Return whole number values between 0-4095 (12 bit analog =
2 12 or 4096- remember we start counting at 0)

o Sensors include; Light, small top-hat and ET (rangefinder)

*You can find sensor information in the sensor and motor manual located in the
help file on your Wallaby (Upper right hand corner of compiler screen)

 Digital or Analog? Activity-1
1. Place your bag of sensors in front of you.
2. The goal is to sort your sensors into two sides; analog and digital.

Sort them on the basis of; if it works like a switch or button it
goes on one side otherwise put it on the other side

3. Note* If you have old “link” sensors with white wires, they do not
work on wallabies.

Digital Analog

Small IR Reflectance Sensor

“ET”-rangefinder

Light Sensor

Larch Touch Sensor

Large Lever Touch Sensor

Checking Values
When writing code you use OPERATORS that allow the
program to check a value stored against another value to
determine if it is True or False.

Boolean operators

> Greater than 5 > 4 is TRUE
 < Less than 4 < 5 is TRUE
 >= Greater than or equal 4 >= 4 is TRUE
 <= Less than or equal 3 <= 4 is TRUE
 == Equal to 5 == 5 is TRUE
 != Not equal to 5 != 4 is TRUE

*Until you are familiar with the Operators that you will be using, you can use
the “hint sheet” for easy reference.

Printable
Boolean

Operators

https://drive.google.com/open?id=0B6a6YkU15IlYQnQ3QzBnd05TTW8
https://drive.google.com/open?id=0B6a6YkU15IlYQnQ3QzBnd05TTW8

Sensor Ports

You call for the analog sensor value with a function

• You have 6 analog ports (0-5)

analog(Port#); analog(1);

You call for the digital sensor value with a function

• You have 10 digital ports (0-9)

digital(Port#); digital(8);

What is a Digital Sensor?

• You may want to think about these digital
sensors being similar to a light switch; You
only have two choices, off, not touched (0)
and on, touched (1).

0

1

Touch Sensors

Description

• The touch sensors are mechanical switches.
Pressing the switch brings two contacts together
completing the circuit. Because of the way this
sensor works, it is either touched and returns a
value of (1) or not touched and returns a value of
(0).

Uses

• These sensors are used to detect if the robot is in
physical contact with something, like a wall.

Description:

• The touch/bump sensor is a mechanical switch. Pressing the switch brings
two contacts together completing the circuit. Because of the way this
sensor works, it is either touched (1) or not touched (0).

Uses:

• This sensor is used to detect if the robot is in physical contact with
something, like a wall.

Activity:

1. Use the Thinking Notes Strategy to read,discuss and follow the directions
on the following slides to use the touch sensor.
– Sensor Ports
– Plug in Your Touch Sensor
– Reading Sensor Values
– Check Touch Sensor
– Interpreting Values
– It’s Dark
– Looping
– Understanding while loops

Understanding The Touch Sensor
Activity 1

https://k20center.ou.edu/instructional-strategies/thinking-notes/

Sensor Ports

Digital ports #0-9 Analog ports #0-5

Plug in Your Touch Sensor

Plug your
touch sensor

into digital
port o

Sensor plug
orientation

Select Sensor List

Reading Sensor Values
From the Sensor List

You can access the Sensor Values from the Sensor List on your
Wallaby

• This is very helpful to get readings from all of the sensors you
are using, and then you can then use the values in your code

Sensor Ports Sensor Values

Scroll down to the digital sensor and
read the value when your touch sensor
 is pressed and when it is not pressed

Check Touch Sensor on
Wallaby Screen

How does the Wallaby
Interpret Sensor Values

• Remember your robot controller reads the
code at ~8 million lines per second
o This is why we used the msleep(); function to

give the motors and servos time to move

• We must give the robot time to read the
sensor values we are checking
o Instead of having the program sleep (it can’t read

any values while sleeping), we simply need it to
keep repeating the code (looping) to give it time
to repeatedly read the sensor values

It’s Dark,
I need my Sensors!

• A great analogy to use for sensors is the
scenario of you walking in the dark to get a
flashlight when the power goes off.
– When you wake up at night and the lights are off,

(it’s dark) you put up your digital sensors (your
hands) and you check for walls and objects in your
way.

• Do you only check one time? No!

• You keep checking (repeating) and checking
(repeating). In computer language this is called
looping!

• You repeat this until your sensors sense the wall and
then you do a different behavior

Looping Your Program
 and Using Your Touch Sensor

If YES

MOVE FORWARD

STOP

Is the lever
sensor

pressed?

START

If NO

It will continue
to keep looping
until the sensor

is pressed at
which point it

will exit the loop

Understanding while Loops

while (condition)
{
Code to execute while
the condition is true

}

Notice there is no
terminating
semicolon after
the while
statement

We accomplish this loop with a while statement.

while statements keep the block of code running

(repeating/looping) so that sensor values can be continually
checked and a decision can be made.
The while statement checks to see if something is true or false
(Boolean operators).

 While Statements Activity 1
Brainstorm while statement conditions with a partner.

1.While

2.{

 do what?

 }

3. exit loop

4. close umbrella and put it away

while it is raining

{

my umbrella is open and over my head

}

close umbrella and put it away

Example:

While Statement Activity 2

while (digital (port#)==0)

Type of sensor;
analog, digital,
analog

Port number;
analog (0-5)
digital (0-9)

Boolean logic;
 > Greater than
 >= Greater than or equal
 < Less than
 <= Less than or equal
 == Equal to
 !=Not equal to{

 motor(0,100);
 motor(3,100);
}

Code to execute while the
condition is true

Notice no
terminating
statement

1. Read and discuss this page with your elbow partner
2. Go to the next slide to complete activity 2.

While Statements Activity-2
Brainstorm while statements with a partner utilizing a touch
sensor. Use the format below.

1.while (digital (port #) is == ?)

2.{

 do what?

 }

3. exit loop

while (digital (1) ==0) // while not touched

{

go forward

}

// as soon as the touch sensor is touched jump out of the loop

Example:

Drive Until Bump Activity 3

Robot will drive forward until the long touch sensor is pressed

1. Open a new project, name it, “your name Drive until Bump”.
2. Use the JBC Code Planning Notebook paper to pre-think your program.
3. Type, compile and run your program that will have your robot

drive forward until the long touch sensor is pressed.

o You can hold the sensor while the robot is moving and
manually trigger it to stop. It helps if you hold the robot up
so that it is not actually moving across the floor.

o Write a program using a while statement that drives the
robot forward until the lever sensor is activated.

o Remember what digital port you plugged the sensor
into (#10 is easy because it is on the end).

Check your pseudocode

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0

Drive Until Bump

Pseudocode (Task Analysis)

1. Print let’s see if we can stop with a
touch sensor

2. Check the sensor value in digital port 15
and when not pressed == 0 (aka true)

3. Keep checking and drive forward
4. Exit loop when sensor value in digital

port is pressed == 1 (aka NOT true)
5. Shut everything off

MOVE FORWARD

If
NO

If YES

All
Off

Is the
lever

sensor
pressed?

START

Print lets see if….

Click Key for Solutions

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.g162e3effb0_0_85

Pseudocode in your notebook

int main()

{

printf(“Carol Drive until Bump”);

1. enable
2. arm horizontal
3. claw open

while (digital(0)==0)

{

motor(0,100);

motor(3,100);

}

1. after } jumped out, close claw
2. go back

ao();

return 0;

}

1. enable
2. arm horizontal
3. claw open
4. while loop ==0
5. forward, no sleep
6. after } jumped out, close claw
7. go back
8. disable

Another example of Pseudocode

Bump the Can and Go Home
Activity 4

A variation on Touch, Closest to and Recycle the Can.

Engineering*
• Students need to attach the long lever sensor to the front of their robot so

that it will touch the object first

• Use the long lever sensor to detect when you have touched the can and then
return to the starting line

• Move the can to various distances

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Bump

See flowchart psuedocode for Bump Can and Go Home Teacher Hint!

https://drive.google.com/drive/u/1/folders/0B8OwGhy6c2TSQnZwNHlRQ1hrbFk

If YES

Print let’s see if….

All
Off

Is the lever
sensor

pressed?

START

If
NO

MOVE FORWARD

MOVE BACKWARDS

Click Key for Solutions

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.g162e3effb0_0_85

While Statement Activity 3

1. Change the expected sensor value from a 0 to a 1
2. Predict how the robot will behave
3. Run the program
4. Discuss results
5. Run again this time holding the touch sensor closed
#include <kipr/botball.h>
int main ()
{
printf(“Drive_until_bump\n”);
while (digital (0)==1)
{
 motor(0,100);
 motor(3,100);
}
 ao();
 return 0;
}

“Smart Claw” Activity 5
Preparation
• Have a robot with a claw capable of grabbing a can (refer to Servo

lessons)
• Add a touch sensor to the robot’s claw so that the claw will close when

the can touches the sensor

– You can use LEGO, Bolts, Tape, #M Sticky Dots to attach the sensor to
the robot

• Make sure the sensor is solidly attached

• Make sure the can can actually trigger the sensor in the claw

1. Open a new project, name it, “your name smart claw”.
2. Use the JBC Code Planning Notebook paper to pre-think your program.
3. Type, compile and run your program that combines the touch

sensor and claw to grab a can.

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0

Assessments
Assessment 15: Tag and Bring Home

Setup: Use Surface-A. One empty 12oz soda can randomly placed in circle 2, 6, or 11.

Desired Outcome: The robot will go out, sense the can, and then return it to the starting box.

Limitations:

1. All robots must be autonomous (no remote controls, wireless communication, or touching

the robot after starting a run).

2. The robot must start completely behind the vertical projection of the inside of the start line.

3. The students must have their robot lined up and ready to go before the can is placed on the

mat.

4. Once the can is placed, the student starts the robot (student cannot reposition, change

program, etc.).

5. If the robot brings the can back to the starting box (can must break the vertical projection

of the inside outside boundary of the starting line) the student can remove the can and

reposition their robot for another run.

6. The teacher will take the can and place it again at random in circle 2, 6, or 11 (except not in

the same circle as any previous successful runs).

Completion:

• A completion occurs when they have returned at least two cans and brought them back to

the starting box.

Learning About Analog Sensors

Analog Activity 1:

1. Read and follow the slides:
• Analog Sensors
• Checking Values
• Reading from the Sensor List

2. After reading and following the slides, go to ET Activity 1.

Analog Sensors

• Returns the analog value of the port (a value
in the range 0-4095). Analog ports are
numbered 0-5.

• Light sensors, range finders and reflectance
are examples of sensors you would use in
analog ports.

“ET”-rangefinder

Small IR Reflectance Sensor

Light Sensor

ET Activity 1

1. Extend your arm in front of you with your thumb pointed up.

2. Focus on your thumb and then slowly bring your thumb
toward your face.

3. What happens when your thumb gets close to your face?

– Did it get blurry? Yes! It got within the focal point of your
eyes (where you could focus on it and make it clear)

4. The ET sensor also has a focal point and if the object is too
close the sensor cannot tell if it is close or far away.

5. When attaching your et sensor to your robot consider the ~4
cm distance from you sensor to its focal point

Understanding the ET Sensor
Activity 2

ET Activity 2: Infrared “ET" Distance Sensor
1. Read, discuss and follow the slides:

• ET Information
• Check ET Sensor on Wallaby Screen
• ET sensor Values
• Optical Rangefinder
• Learning to Use an Analog Sensor

2. After reading and following the slides, go ET Activity 3.

ET Sensor
Information

• Plug your ET sensor into an analog port
• ET sensor uses a special function:
• Low values: indicate greater distance (farther from robot)
• High values: indicate shorter distance (closer to robot)
• Optimal range is between 4” and 40’.
• 0”-3” values are not optimal.
• Objects closer than the focal point(4”) will have the same

readings as those far away.

Reading Sensor Values
From the Sensor List

You can access the Sensor Values from the Sensor List on your Link

• It is very helpful to get readings from all of the sensors you are
using, and then you can then use the values when writing
your code

Select Sensor List Sensor Ports Sensor Values

Check ET Sensor on Wallaby Screen
Plug the ET sensor into any of the analog ports (0-5)

Select Sensor List

1.

2.

3. Read the values by placing your hand in front of the et
sensor.
Move your hand close to the sensor and then far
away. Notice the values.

4.
The point where you see the values suddenly change
from getting larger to getting smaller is your “Focal
point”. See next slide.

Plug your ET into any
Analog port

Create a number line to represent
your et sensor

Find your focal point; where the numbers
change

Find your focal point

ET sensor Values

~2700

Objects that are farther away return a smaller
number

0 400 900 1000150020002600 0

Focal Point

Objects that are
inside the focal
point return a
smaller #, too
close to object

Useful range of the sensor

See Learning to use an Analog Sensor. You may need to adjust the value up or
down a little for your desired distance from an object.
Optimal distance is about 4”

Optical Rangefinder
• Sensor emits a narrow infrared beam, and measures the angle

of the beam return using a position-sensitive detector (PSD):

Focused IR Beam

Lens

Position Sensing Device (PSD)

(high value)

(low value)

(low value)

The position sensing device returns a value
based on the displacement from where the
reflected beam hits it from where the focal point
hits it

Reflected Beam

Focal Point

Learning to Use an ET Analog Sensor

while (analog (port#)<=?)

Type of sensor;
analog, digital,

Port number;
analog
digital

Boolean logic
 > Greater than
 >= Greater than or equal
 < Less than
 <= Less than or equal
 == Equal to
 !=Not equal to{

 motor (0,100);
 motor (3,100);
}

What you want it to repeat while
checking to see if the while
statement is true

Notice no
terminating
statement

ET Activity 3
Find the Wall and Back Up

Use the JBC Code Planning Notebook paper and write the
Pseudocode (Task Analysis)

1. //Print Find the Wall and Back Up
2. //Check the sensor value in analog port 1,

Is the value <=2700?
3. Drive forward as long as the value is

<=2700 (or your determined value)
4. //Exit loop when value is 2700(or your

determined value) or greater
5. //Back up for 3 seconds
6. //Shut everything off
7. Open a new project, name it, “your name FInd the Wall”.
8. Follow your psuedocode to type, compile and run your

program.
Move Backwards 3 seconds

Click Key for Solutions

MOVE FORWARD

If
Yes If NO,

exit loop

All
Off

Is the
value <=

2700?

START

Print Find the….

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0
https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.g162e3effb0_0_85

Conditionals with ET

Objective: Robot will make choices. It will go
forward or go backwards depending on the
value of return from the ET.

• To make choices we need to use an “if
statement”.

if statements allow the code being run to make a choice (If the
bump sensor is pressed, do this)

if (value)
{
 Execute this block of code- whatever is
 between curly braces
}

*You can use if statements within a while loop

if Statements = Choices

Just like the while statement no
semicolon is used after the if statement

Checking Values

• When writing code you use OPERATORS that allow the
program to check a value stored against another value to
determine if it is True or False.

Boolean operators

> Greater than 5 > 4 is TRUE
 < Less than 4 < 5 is TRUE
 >= Greater than or equal 4 >= 4 is TRUE
 <= Less than or equal 3 <= 4 is TRUE
 == Equal to 5 == 5 is TRUE
 != Not equal to 5 != 4 is TRUE

You can print the JBC Tent and distribute a copy to each student.

https://drive.google.com/open?id=0B8OwGhy6c2TSTEg3dksxVGpKWnc

 While Statements
Brainstorm while and if statement conditions with a
partner.

while I’m walking on the sidewalk

{

if there is no one coming

{

 walk in the middle of the sidewalk

}

If someone is coming

{

 get to the right side of the sidewalk

}

}

exit the loop if I’m not on the sidewalk

Example:

 While Statements
Brainstorm while and if statement conditions with a
partner.

while the a button is not pressed

{

if et range is ??

{

 go forward

}

if et range is ??

{

 go backwards

}

}

exit the loop if the a button is pressed

Example:

ET Activity 4
Find the Wall and Back Up and Go

forward
Use the JBC Code Planning Notebook paper and write the Pseudocode (Task
Analysis)

1. //Check the a button, if it is not pressed

2. Drive forward as long as the value is >=2700 (or
your determined value)

3. Drive backwards as long as the value is <=2700
(or determined value)

4. //Exit loop when a button is pressed

5. //Shut everything off
6. Open a new project, name it, “your name FInd the Wall”.
7. Follow your psuedocode to type, compile and run your program.

Click Key for Solutions

If the a button
is not

pressed?
YES

NO

Begin

End

Return 0.

If NO if YES

Is the et
value

>=2700

Drive forward
Drive

backwards

Stop motors.

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0
https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.g162e3effb0_0_85

Assessment
Assessment 16: Proximity

Setup: Use Surface-A. One ream (500 sheets) of standard copy paper.

Desired Outcome: On two separate runs, the robot has to sense the wall (ream of paper) that has

been randomly placed on the mat and drive out to it, stopping within approximately 4 1/4” (the

width of a piece of paper folded in half lengthwise) of the wall without touching it.

Limitations:

1. All robots must be autonomous (no remote controls, wireless communication, or touching the

robot after starting a run).

2. The robot must start completely behind the vertical projection of the inside of the start line.

3. Once the robot is in starting position, a ream of paper is placed on edge (long side down and

parallel to the starting line) at either circles 4, 6, 9 or 11.

4. Once the ream of paper is set, students can push “run” on their robot.

5. Robot must come to a complete stop within approximately 4 1/4” (the width of a piece of

paper folded in half lengthwise) without touching the wall with any part of the robot.

Completion: When the robot goes out, senses the wall and stops within approximately 4 1/4"” of

the wall without touching it on two different runs.

Extra Optimization: Require students to stop closer or further away.

1. Read and follow the directions on the following slides:
– Analog Small and Large Top Hat Sensors
– Reflectance Sensor Ports
– Plug in Your Reflectance Sensor
– Reading Your Sensor Values
– Understanding the IR Sensor

2. After reading and following the slides, go to Find the Black Line
Activity 1

Reflectance Sensor
Activity 1

#

Analog Sensor: Small Top Hat Sensors

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how much is
reflected back.
• Amount of IR reflected back depends on surface texture, color and

distance to surface
This sensor is excellent for line following
• Black materials typically absorb IR and reflect very little IR and

white materials typically absorb little IR and reflect most of it back
o If this sensor is mounted at a fixed height above a surface, it is easy to

distinguish a black surface from a white surface
o Connect to analog port 0-5

Reflectance Sensor Ports

1. This is an analog() sensor so plug it into any of your
analog ports
• Values will be between 0-4095
• Mount the sensor on the front of your robot so that it

is pointing to the ground and ~1/4” from the surface

Surface

Reading Sensor Values
From the Sensor List

You can access the Sensor Values from the Sensor List on your Wallaby

• This is very helpful to get readings from all of the sensors you are
using, and then you can then use the values in your code

Select Sensor List Sensor Ports Sensor Values

● Continue to next slide

Reading Sensor Values
From the Sensor List (Cont.)

With the IR sensor plugged into analog port #0
• Over a white surface the value is (56)
• Over a black surface the value is (1250)

 Your IR sensor is correctly
mounted when you have

values between 1200- 1500
on the Black Surface

 Your IR sensor is correctly
mounted when you have

values between 30-60 on the
White Surface.

Understanding the IR Values

1. Place your IR analog sensor in one of the analog ports (0-5).
2. After mounting your IR sensor, check that the values are: white 30-60 and

black 1200-1500; write down your values.
3. Find your threshold or middle value.
4. This number will be the value you need for the find the black line activity.

My black value is ~2500

250030

My white value is ~100

Determine what is Threshold or “half way”.
This example is ~1270.

1270

0 4095

Find the Black Line
Activity 2

Use the JBC Code Planning Notebook paper and write the
Pseudocode (Task Analysis)

1. //Prints looking for black line
2. //Check the sensor value in analog port 0,

<=1225
3. drive forward as long as the value is

<=1225
4. //Exit loop when value is 1226 or greater
5. //Prints Found Black Line
6. //Shut everything off
7. Open a new project, name it, “your name Find the Line”.
8. Follow your psuedocode to type, compile and run your

program.

If NO,
exit loop

Looking for Black
Line

All
Off

Is the
value <=

1226?

START

If
Yes

MOVE FORWARD

 Found Black Line

Click Key for Solutions

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0
https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.g162e3effb0_0_85

Learning about if Statements

1. Read, discuss and follow the slides:
if Statements
Line Following Strategy
Buttons
Understanding while and if

2. After reading and following the slides, go to Line Following Activity 1

if statements allow the code being run to make a choice (If the
bump sensor is pressed, do this)

if (value)
{
 Execute this block of code- whatever is
 between curly braces
}

*You can use if statements within a while loop

if Statements = Choices

Just like the while statement no
semicolon is used after the if statement

 While Statements
Brainstorm while and if statement conditions with a
partner.

while it is raining

{

if my girlfriend is under the umbrella with me

{

 shift the umbrella over her head

}

If my girlfriend leaves

{

 shift the umbrella to cover my head

}

}

exit the loop if the rain stops

Example:

 While Statements
Brainstorm while and if statement conditions with a
partner.

while I’m walking on the sidewalk

{

if there is no one coming

{

 walk in the middle of the sidewalk

}

If someone is coming

{

 get to the right side of the sidewalk

}

}

exit the loop if I’m not on the sidewalk

Example:

Line Following Strategy

Line Following Strategy: While - Is the button pushed?
Follow the line’s left edge by alternating the following 2 actions:
1. If detecting dark, arc/turn left.

2. If detecting light, arc right.
3. Think about a sharp turn. What will your motor function look like? Remember the

bigger the difference between the two motor powers the sharper the turn.

 While Statements
Brainstorm while and if statement conditions with a
partner.

while following the line if the button is not pushed

{

if black is detected

{

 turn a sharp left

}

If white is detected

{

 turn a sharp right

}

}

exit the loop if the rain stops

Example:

Understanding while and if

YES

NO

Begin

End

Return 0.

If NO if YES

Is dark
detected?

Turn left if
value is >=

1225

Turn right if
value is <

1225

Stop motors.

2048
>=2048<2048

Turn right Turn left

(while)
Is the Button pressed? You must cover all values

0 4095

Assume all these
 values are WHITE

Assume all these
 values are BLACK

This is the part of
the code that tells
the Wallaby what
to do when it sees
black or white.

Line Following
Using while and if

Activity 1
Use the JBC Code Planning Notebook paper and write the Pseudocode (Task Analysis)

1. Print “line following”.
2. Checks the status of the Button=while statement
3. Checks the value from the reflectance sensor=if
4. Turns left if value is >= 1225 (or your

determined value)=inside curly brackets
5. Turns right if value is < 1225 (or your

determined value)=if statement followed by
brackets

6. Open a new project, name it, “your name Line Following”.
7. Follow your psuedocode to type, compile and run your program.
8. If you are having trouble consider:

– You have three variables to change.
• How sharp or tight you are turning.
• The value the sensor is reading.
• The placement of the sensor

9. After programing with success look at Tip 1 , Tip 2, Tip 3.
Click Key for Solutions

https://drive.google.com/open?id=1ZxK9kPqqrEjoog1Qmpbcqi7bwQjcA06IUBudv2zWkC0
#
https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit?usp=sharing

Tip 1

1. Align and tab over matching curly braces.
int main ()

{

printf(“Sarah line follow\n”);

while (digital (10)==0)

{

if (analog (5)>1225)

{

 motor (0,100);

 motor (3,100);

}

}

ao();

return 0;

}

(Hint: Hit the Indent button at the top of the
compiler and see what happens.)

Tip 2

2. Use while, if and else.
int main ()
{
 printf(“Sarah line follow\n”);
 while (digital(0) == 0)
 {
 if (analog(0) >= 1225)
 {
 motor (0,100);
 motor (3,-10);
 }
 else
 {
 motor (0,-10);
 motor (3,100);
 }
 }
 ao();
 return 0;
}

You can replace the second if statement
with else

Tip 3
3. Change the threshold.
int main ()

{

 printf(“Sarah line follow\n”);

 while (digital (15)==0)

 {

 if (analog (5)>1225)

 {

 motor (0,100);

 motor (3,100);

 }

 else

 {

 motor (0,100);

 motor (3,100);

 }

 }

 ao();

 return 0;

}

You can replace the second if statement
with else

The value of 1225 or the “threshold” value is ½

way between the observed values.

Remember black reflects less IR than white so

the value is lower.

Notice the Boolean operators >= 1225 or < 1225

Your value may be much lower due to lighting,

placement and turns

Assessment
Assessment 17: Walk the Line

Setup: Use Surface-B.

Desired Outcome: The robot will follow the black line from start to finish.

Limitations:

1. All robots must be autonomous (no remote controls, wireless communication, or touching

the robot after starting a run).

2. The robot must start completely behind the vertical projection of the inside of the start line.

3. The robot must be following the line. Dead reckoning will not be allowed.

4. Lines are only counted as touched if all the driving wheels touch the colored line.

Completion: When the robot’s drive wheels touch or cross the blue line.

Extra Optimization: Challenge students to make it all the way to the finish line.

Buttons
Having buttons (Digital) on the controller can be very useful when programming your
robot
On the KIPR Wallaby there is physical button (named side) and 6 soft buttons
(named a,b,c,x,y,z) on the screen

• All have name_button() functions which return 1 if the
button is being pressed and 0 otherwise

Example: a_button() ==0;

Using the Light Sensor

1. Get a light sensor (refer to picture below)

The light sensor senses infrared light (human cannot see infrared),
so light must be emitted from an incandescent light, not an LED
light

• You can use a non LED flashlight.

Light Sensor

Using the Light Sensor
Plug the light sensor into analog port 0

Select Sensor List

1.

3.

2.

Read the values without your light shining on the
sensor and then again when you shine the light on
your sensor

*The more light (infrared) detected,
the lower the reported value.

Plug your light sensor
into analog port o

wait_for_light() function

The wait_for_light function allows your program to run
when your robot senses a light.

• Note: When the program calls this function, it has a built-in calibration
routine that will come up on the robot screen
(a step-by-step guide to this calibration routine is on a following slide).

wait_for_light(0);

Port #

wait_for_light()

1. Start a new project and call it wait_for_light
2. Use this code for your new project

int main()

{

 wait_for_light (0);

 printf(“Sarah, I see the light!\n”);

 return 0;

}

3. Compile your program and run it on your robot

4. Go to next slide for calibration routine

When the light is on (low value),
press the “Light is On” button.

When the light is off (high value),
press the “Light is Off” button.

You will get a “Good
Calibration!” message and

moving red dot on green bar
when done correctly.
You will get a “BAD

CALIBRATION” message when
not done correctly, and you will
need to run through the routine

again.

5. Follow the calibration instructions on the robot screen

Light
Sensor

Light
Sensor

6. Shine the light onto your light sensor to start the program

Wait For Light

Activity :
Write a program for the KIPR Wallaby that waits for a light to come
on, drives the robot forward for 3 seconds, and then stops.

Pseudocode Comments
1. Wait for light. // 1. Wait for light.

2. Drive forward. // 2. Drive forward.

3. Wait for 3 seconds. // 3. Wait for 3 seconds.

4. Stop motors. // 4. Stop motors.

5. End the program. // 5. End the program.

Check your psuedocode

Flowchart

Drive forward.

Wait for 3 seconds.

Stop motors.

End

Return 0.

Begin

Wait for light.

Assessments and Rubrics

Suggestions: Understanding or Group Collaboration rubrics

82

https://docs.google.com/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit#slide=id.g160ba0e388_5_5

