Welcome to Botball 2018!

=1

Before we get started...
1.Sign in, and collect your materials and electronics.

2.KIPR staff may come around and install/copy files as needed.
3.Charge your Wallaby batteries-WHITE to WHITE (refer to next siide)

KIPR Robotics

i Controller - Wallaby

4.0pen the “2018 Parts List” folder, which contains files that list all of
your Botball robot kit components. Please go through the lists and
verify that you have received everything.

5.Build the DemoBot(s).

Raise your hand if you need help or have questions.

Professional Development Workshop #B h lr’
Page :1 © 1993 - 2018 KIPR Dt a

= : ’
/By Charging the Controller’s Battery

® For charging the controller’s battery, use only the power
supply which came with your controller.
® It is possible to damage the battery
by using the wrong charger or
excessive discharge!

®* The standard power pack is a lithium iron
(LiFe) battery, a safer alternative to lithium polymer
batteries. The safety rules applicable for recharging any
battery still apply:
®* Do NOT leave the battery unattended while charging.

® Charge in a cool, open area away from flammable materials.

Professional Development Workshop #B h lr’
Page :2 © 1993 - 2018 KIPR Dt a

Making the Connection

All connections are as follows:
 Yellow to Yellow (battery to controller)

 White small to White small (charger to battery)
* Yours may vary slightly, use caution unplugging

* Black to Black (motors, servos, sensors)

Professional Development Workshop #B h lr’
Page :3 © 1993 - 2018 KIPR Dt a

Color Touch Screen

Download port

KIPR Robotics Controller (microuss)
Wallaby

Power (external battery
connection)

N . i 6 Analog
(— Sensor Ports
2 Servo R 25 (Port #0 - 5)
Motor Ports 2 Motor Ports 1 Digital 2 Motor Ports Motof::)orts
(Port#0&1) (Port#O& 1) Sensorports (Port#28&3) (porey g 3) Power Switch

(Port#0-9)

Professional Development Workshop # E h lr
Page :4 © 1993 - 2018 KIPR Dt a

Wallaby Power

®* The KIPR Robotics Controller — Wallaby, uses an external

battery pack for power.

® It will void your warranty to use a battery pack with the Wallaby that
hasn’t been approved by KIPR.

® Make sure to follow the shutdown instruction on the next slide.
Failure to do so will drain your battery to the point where it can
no longer be charged. If you plug your battery into the charger
and the blue lights continue to flash then you have probably
drained your battery to the point where it cannot be charged
again. You can purchase a replacement battery from
www.botballstore.org.

Professional Development Workshop #B h lr’
Page :5 © 1993 - 2018 KIPR Dt a.

http://www.botballstore.org

Wallaby Power Down

®* From the Wallaby Home Screen press Shutdown
® Select Yes

®* Go to your Wallaby screen and check to see if it is

halted (If your Wallaby shows to be unable to be halted, rerun your

last program either to completion or just start and stop it, and this
should clear up any problem)

* Slide the power switch to off AND unplug the
battery, using the yellow connectors, being careful
not to pull on the wires

Professional Development Workshop #B h lr’
Page :6 © 1993 - 2018 KIPR Dt a.

Build the DemoBots

Professional Development Workshop #B h lr’
Page :7 © 1993 - 2018 KIPR Dt a.

\mﬂ Hi! I’'m Botguy, the Botball mascot!

i
b

Botball 2018

Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)
with significant contributions from KIPR staff
and the Botball Instructors Summit participants

v2018-01-12r1

Professional Development Workshop # E h lr
Page :8 © 1993 - 2018 KIPR Dt a

Thank you for participating!

We couldn’t do it without you!

KIPR’s mission is to:

* improve the public’s understanding of science, technology, engineering, and math;
* develop the skills, character, and aspirations of students; and
® contribute to the enrichment of our school systems, communities, and the nation.

Professional Development Workshop # E h lr
Page :9 © 1993 - 2018 KIPR Dt a

Housekeeping

® Introductions: workshop staff and volunteers

® Food: lunch is on your own

®* Workshop schedule: 2 days

Professional Development Workshop # B h lr’
Page :10 © 1993 - 2018 KIPR Dt a

Day 1 Day 2

®* Botball Overview ®* Botball Game Review

* Getting started with the KIPR Software Suite ® Tournament Code Template

* Explaining the “Hello, World!” C Program ® Fun with Functions

®* Designing Your Own Program ®* Repetition, Repetition: Counting
®* Moving the DemoBot with Motors ®* Moving the iRobot Create: Part 1
®* Moving the DemoBot Servos ®* Moving the iRobot Create: Part 2
®* Making Smarter Robots with Sensors ® Color Camera

* Repetition, Repetition: Reacting ® iRobot Create Sensors

®* Motor Position Counters ®* Logical Operators

®* Making a Choice ®* Resources and Support

* Line-following

* Homework

Professional Development Workshop #B h lr’
Page :11 © 1993 - 2018 KIPR Dt a

iRobot /{S SOLIDWORKS

Professional Development Workshop # B h lr
Page :12 © 1993 — 2018 KIPR Dt a

Like §
Follow Us
Today!

@ @botballrobotics
o /BotballRobotics

‘ @botballrobotics

@botballrobotics

Join Us Online!

N ' o %UN]GO&
i i i ﬁ CHE\I‘FLENaéE

@botballrobotics @kissinstitute @juniorbotball

W #BOTBALL

TAG OUR SPONSORS

TFCU €N

S ———
Tinker Federal Credit Union

oY
i] i ’I
@ N 5.0 0

Danpdd ARVEST

Q)ciirociy HITACHI

College of Engineering Inspire the Next

;

=y
2
2S SoLIDWORKS
o Poctca bebutics wntints dena |

rRobot

Practical Col |ege of
Robotics . .
Institute $J Engineering

Austria

BancFirst Oklahoma >
B Loyl | astellas

Aeronautics b
1o Oklahoma ¢~ You: CommiSSion .
“4sb
P

Professional Development Workshop # E h lr
Page :15 © 1993 - 2018 KIPR Dt a

SOUTHERN ILLINOIS UNIVERSITY

DWARDSY

G ROSSMONT
COLLEGE

A.

UMASS

LOWELL

LOYOLA

UNIVERSITY CHICAGO

=
U 1870 <
1Y
EA RPN =
0 O

Preparing people to lead extraordinary lives

Professional Development Workshop
© 1993 — 2018 KIPR

S-T-E-M Qutreach

' A MITRE Corporation Initiative

(3% UNIVERSITY OF

MARYLAND

Carnegie Mellon Qatar

Vienna Institute of Technology
Austria

#Botball

Botball Overview

What and when?
GCER and ECER
Preview of this year’s game
Homework for tonight

Professional Development Workshop # E h lr
Page :17 © 1993 - 2018 KIPR Dt a

What is Botball?

® Produced by the KISS Institute for Practical Robotics (KIPR), a
non-profit organization based in Norman, OK.

®* Engages middle and high school aged students in a team-oriented
robotics competition based on national education standards.

® By designing, building, programming, and documenting robots,
students use science, technology, engineering, math, and writing
skills in a hands-on project that reinforces their learning.

Professional Development Workshop #B h lr’
Page :18 © 1993 - 2018 KIPR Dt a.

When is Botball?

2017 FALL Jan. — Mar. 7 — 9 Weeks Mar. = Jun. July 2&18

’ V4 /

* Prof. Dev. workshops. * Regional tournaments.

@ o o
* Recruit teams. * Design, build, & program * Global Conference on

* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

Professional Development Workshop #B h lr’
Page :19 © 1993 - 2018 KIPR Dt a.

When is Botball?

2017 FALL Jan. — Mar. 7 — 9 Weeks Mar. = Jun. July 2018
@ / >
* Prof. Dev. workshops. * Regional tournaments.
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

YOU ARE HERE!

® Provides the skills and tools necessary to compete in the tournament.
®* Teams will learn to program robots, and will leave with working systems.
* Skills and tools/equipment are kept and are reusable outside of Botball.

®* Not a standalone curriculum! Goal is to support team success in Botball!

(For building and programming resources, visit the Team Home Base.)

Professional Development Workshop #B h lr’
Page :20 © 1993 - 2018 KIPR Dt a.

When is Botball?

2017 FALL Jan. — Mar. 7 — 9 Weeks Mar. = Jun. July 2&18
®
* Prof. Dev. workshops. * Regional tournaments.
o
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

® Reinforces computational thinking and the engineering design process.
®* Teams must submit three online project documents, which count for points.

® Online support throughout the season from KIPR and other Botball teams.

Professional Development Workshop #B h lr’
Page :21 © 1993 - 2018 KIPR Dt a.

When is Botball?

2017 FALL Jan. — Mar. 7 — 9 Weeks Mar. = Jun. July 2018
@ / >
* Prof. Dev. workshops. * Regional tournaments.
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

® Practice: teams test and calibrate robot entries on the official game boards
® Seeding rounds: teams compete against the task to score the most points
®* Double elimination (DE) rounds: teams compete head-to-head

* Alliance matches: teams eliminated in DE pair up to score points together

® Onsite documentation: 8-minute technical presentation to judges

Professional Development Workshop #B h lr’
Page :22 © 1993 - 2018 KIPR Dt a.

When is Botball?

2017 FALL Jan. — Mar. 7 — 9 Weeks Mar. = Jun. July 2&18
®
* Prof. Dev. workshops. * Regional tournaments.
o
* Recruit teams. * Design, build, & program * Global Conference on
* Fundraise. autonomous robots. Educational Robotics.
* Apply for scholarships. * Document process online. * International Botball.

Global Conference on Educational Robotics (GCER)

® International Botball Tournament: all teams are invited to participate

®* Paper presentations: students may submit and present papers at GCER

Guest speakers: presentations from academic and industry leaders

®* Autonomous showcase: students display projects in a science fair style

YOU ARE ALL ELIGIBLE!
Page :23 O 195 - S KPR #Botball

GCER-2018

i
of BT TR
e e

L)

' 5 g
i l‘!!r..) - |

e S e e)
- 2 R Ty gl o — -2 ey -

.o - & B G s % o s

* |Indian Wells, California * Meet and network with students
* aka “Coachella Valley” from around the country and world
e July 25-29, 2018 * Talks by internationally recognized
* International Botball Tournament robotics experts
* Autonomous Robotics Showcase <+ Teacher, student, and peer
* Junior Botball Challenge reviewed track sessions
http://gcer.net

Professional Development Workshop # E h lr
Page :24 © 1993 - 2018 KIPR Dt a

http://www.kipr.org/gcer

GCER-2018

Preconference classes on July 24t
Global Junior Botball Challenge

KIPR Open Autonomous Robotics Game
e Botball for grown-up kids!

Autonomous
Aerial

Vehicle
Competition

Professional Development Workshop # E h ll‘s’
Page :25 © 1993 - 2018 KIPR Dt a

ECER-2018

European Conference on Educational Robotics

* Malta * European Botball Competition
* |nthe Mediterranean Sea
* April 16-20, 2018 * Talks by Researchers and Students

v LulupcGanl

Conference on i

LPHA
em |
& f = A 1 ke LR
o , & Cational
S y | - saman
tgm’ e 4 e i
a . /8 e S i K
g (=> & 3 = E e g =
r H I “ E | l ¥ -) - L A
k
e S i) y
—= W >
i F& i . : tgm
- | T » e
B " AUTONOMOUS . ¥
S
= suans

Robotics
Institute
e F\l1stria

www.pria.at

Professional Development Workshop # B h lr’
Page :26 © 1993 - 2018 KIPR Dt a

Professional Development Workshop # B h lr
Page :27 © 1993 — 2018 KIPR Dt a

Homework for tonight

Review the game rules on your Team Home Base
®* We will have a 30-minute Q&A session tomorrow.

* After the workshop, ask questions about game rules in
the Game Rules Forum.
® You should regularly visit this forum.
® You will find answers to the game questions there.

Professional Development Workshop #B h lr’
Page :28 © 1993 - 2018 KIPR Dt a.

Jrr\jj.)r\r
rlSUTICS Hriot

Welcome to the Botball Team Home Base

2018 Team Home Base

The Team Home Base is your resource for:

» Botball online project documentation
» Botball game FAQs
» Other Botball game related resources

Professional Development Workshop # E h lr
Page :29 © 1993 - 2018 KIPR Dt a

http://homebase.kipr.org/

\f\\g;::fﬁ‘ Preview of this year’s Botball game
S

Botguy Visits the Valley

Botguy has made his way out West and is ready to see how
he can benefit the Coachella Valley community with robotic
applications in agriculture, while getting to enjoy some of the
benefits the valley has to offer. The Coachella Valley is known
for their date farming and their amazing aerial views from the
tram. Botguy has been hired to improve tourism as well as
farming practices in the area, despite frequent limitations on

water for irrigation.

Hold your questions!

Game Q&A is tomorrow!
Page 130 T 1055 ot ke #Botball

Getting Started with the KIPR Software Suite

What is a programming language?
How can | create new projects and files?
How can | write and compile source code?
How can | run programs on the KIPR Wallaby?

Professional Development Workshop # E h lr
Page :31 © 1993 - 2018 KIPR Dt a

Blah! Blah!
Blah! Blah!

®* Computers only understand machine language (stream of bytes),
which computers can read and execute (run).

®* Unfortunately, humans don’t speak machine language...

Professional Development Workshop # E h lr
Page :32 © 1993 - 2018 KIPR Dt a

N,
q ﬁ‘ f =
XV — (nsm)

Language Language

, Programming r\ Machine

®* Humans have created programming languages that allow them (humans) to

write “source code” that is easier for them (humans) to understand.

® Source code is compiled (translated) by a compiler (part of the KIPR Software

Suite) into machine language so that the computer can read and execute (run)
the code.

®* Programming languages have funny names (C, C++, Java, Python, ...)

Page

Professional Development Workshop # E h lr
133 © 1993 — 2018 KIPR Dt a

Connect the Wallaby to your computer

at Workshop and Tournament

 Connect the Wallaby to your computer using USB Cable
1. Plug battery into Wallaby- YELLOW TO YELLOW.
2. Turn on the Wallaby with the black switch on the side

Attach the

Insert the USB end to

micro-USB end computer
here

1. Once your Wallaby has booted, the Wallaby will appear in the list of
available Ethernet connections for your computer.

2. If you get a message about the driver raise your hand for help or go to the
team home base: Troubleshooting->USB driver for instructions

Professional Development Workshop # E h lr
Page :34 © 1993 - 2018 KIPR Dt a

Nm *'f’f* Loading the Starting Web Page (USB) K

1. Launch your web browser (such as Chrome or Firefox, but not
Internet Explorer) and power up your Wallaby.

2. Copy this IP address into your browser’s address bar followed by
“” and port number 8888; e.g.,

|192.168.124.1':|8888'

P adélress Po'rt #
3. Note that USB cable IP address is 192.168.124.1:8888
The user interface for the package will now come up in your
browser.
5. TEST THIS at the workshop

a. See Team Homebase -> 2018 Resources -> Troubleshooting -> USB Driver

Professional Development Workshop # B h lr’
Page :35 © 1993 - 2018 KIPR Dt a

Connect the Wallaby to your computer,

Smart Phone or Tablet At School

« Connect the Wallaby to your Browser device via Wi-Fi

 Thisis great at home or School
* Not recommended at Large Workshops or any Tournament

1. Turn on the Wallaby with the black switch on the side

a. Note: the actual version number you see most likely will be v23 (or higher)

|) o
wWallaby vi4

Copyright (C) 2012 - 2016
KISS Institute for Practical Robotics

2. Use the info (Wallaby SSID # and Password), from the about page, to connect
via Wi-Fi

Professional Development Workshop # B h lr’
Page :36 © 1993 - 2018 KIPR Dt a

Connection

®8e00 ATRT LTE 1:58 PM

£ settings Wi-Fi

Wi-Fi

~ 1500-wallaby

CHOOSE A NETWORK...

ATT2h5c5T4
ATT3jLU4RyY
CoxWiFi
DF995C
HCS

HCS - 5G
KIPR

KIPR Guest

Other...

7 % 78%)

Page :37

When you are connected to your Wallaby,
your device may give various errors; “no
internet connection” or “connected with

limited..”

In the bottom right corner of the KIPR IDE
there is an icon that shows if you are still
connected to the Wallaby.

|
|
|

connected —>"¥y

NOT ikl
connected

Professional Development Workshop # B h lr’
© 1993 - 2018 KIPR Dt a

Nm : Loading the Starting Web Page (Wi-Fi) “

1. Launch a web browser such as Chrome or Firefox (Internet
Explorer will not work) and power up your Wallaby. Connect to
the Wallaby via Wi-Fi.

2. Copy this IP address into your browser’s address bar followed by
“” and port number 8888; e.g.,

|192.168.125.1,:|8888'

| |
IP address Port #
3. The user interface for the package will now come up in your
browser.

a. Note: during competitions use the USB cable connection (IP address:
192.168.124.1)

4. You may use a computer, tablet or even a smart phone through
Wi-Fi.

Professional Development Workshop # B h lr’
Page :38 © 1993 - 2018 KIPR Dt a

How can | write and compile

my own source code?

. . O 192.168.125.1:8888 ¢ O & o
To make it easier for you to .E. e S
learn and use a programming
language, KIPR provides a = —E—

web-based Software Suite
which will allow you to write
and compile source code using

the C programming language. | K=
©

Development Tocls

- KISS IDE
Edit and compile pragrams for the device

About Settings
Display the About page }' Modify the system's settings, such as network, time,

and maore.

User Prefarences

The development package will & oo vmomaion st sty o,

work with almost any web

browser except Internet = 5
Explorer.

Hust filesystam manager

Professional Development Workshop # E h lr
Page :39 © 1993 - 2018 KIPR Dt a

1. Click on the KISS IDE button.

Runiner

4 Rums & usar program

192.168.125.1:8888 <

KISS IDE
@ Edit and compile programs for the device

About

Settings

NOTE: The buttons might be in different locations depending on device type.

Professional Development Workshop

Page :40 © 1993 - 2018 KIPR

#Botball

Page

141

Add a new user folder by clicking the + sign in
the Project Explorer.

Name your new user folder by the student’s
name to help organization. All of your
different projects will go into this user folder.

Create New User

User Name

Student Name

Professional Development Workshop
© 1993 — 2018 KIPR

3.

Project c~-'~rer
Default User

+ Add Project

Click Create to complete.

#Botball

Creating your first project

1. Go back to Project Explorer and select the User
Name you created from the drop down. This is
the folder you created.

2. Click +Add Project. You are adding a project to Project Explorer
your folder.

v Default User
Carol ann Folder
Sarah Folder

HelloWorld

Project Explorer =

‘ arah Folder B

+ Add Project

Professional Development Workshop # B h lr
Page :42 © 1993 — 2018 KIPR Dt a

Name your project

1. Give your project a descriptive name

* Note: you will have a lot of student’s projects, so consider using their first
name followed by the name of the activity.

2. Give a descriptive Source File Name as well. The Source File
needs to end with a .c
« Then press the Create button.

Create New Project

Project name
My First iject|

Programming Language

: :

Source file name

main.c

Professional Development Workshop #E h lr’
Page :43 © 1993 - 2018 KIPR Dt a

Page

1. Click the Compile button for your project and, if successful, click
Run so you can run your project to see if it works.

J/ [192.168.123.240:8888/%/2 x Yy
C [} 192.168.123.240:8888/#/apps/kiss?p

= P
ol
2o
a0
-G
@ il
(o]
()]
~+
o

workshop

return @

Include Files

+ Add Fils

Source Files

NOTE: When you compile, your project is automatically saved.

Professional Development Workshop
144

© 1993 - 2018 KIPR # EDthalr

Page

145

Note: one project = one program.

* Click the + Add Project button or click the Menu button to return
to the starting menu.

* Proceed as before.

* The Project Explorer panel will show you all of the user folder
projects and actively edited files.

KIPR Software Suite

a \ +

(- () | 192.168.125.1:8888/#/apps/kiss?project=My First Project&file=main.c&cat=src

@ Q search
[[2 & = %
Save main.c File Menu

Project Menu Undo Redo Indent

Compile My First Project Run

File: main.c

1 #include <kipr/botball.h>

2

3 int main()

4 {

5 printf("Hello World\n");
return 0;

71}

8

Source Files

[main.c

Professional Development Workshop

© 1993 - 2018 KIPR # EDthalr

Explaining the “Hello, World!” C Program

Program flow and the main function
Programming statements and functions
Comments

Professional Development Workshop # E h lr
Page :46 © 1993 - 2018 KIPR Dt a

“Hello, World!”

File: main.c

1 #include <kipr/botball.h>

2

3 int main()

4 { G o ST
. _ i Note: We will use this template :

5 printf("Hello World\n"); | every time; we will delete lines 1

& return 0: | we don’t want, and we will :

_ ! addlines that we dowant. |

] } L e e e e e o e e e e M M e |

:

Professional Development Workshop # B h lr
Page :47 © 1993 — 2018 KIPR Dt a

Top

\4

Bottom

Page

Program flow and line numbers

Prmt "HeIIo, World'“

int main() J\/L

{ Return 0
printf("Hello World\n");
return 0;

}

Computers read a program just like you read a book—
they read each line starting at the top and go to the bottom.

#include <kipr/botball.h>

Computers can read incredibly quickly—
Millions of lines per second!

Professional Development Workshop # E h lr
148 © 1993 — 2018 KIPR Dt a

Source code

1 #include <kipr/botball.h>

2

3 int main()

4 {

5 printf("Hello World\n");
b return 0;

7}

o

This is the source code for our first C program.

Let’s look at each part of the source code.

Professional Development Workshop # B h lr
Page :49 © 1993 - 2018 KIPR Dt a

The main function

A function defines a list of actions to take.
A function is like a recipe for baking a cake.
When you call (use) the function,
the program follows the instructions and bakes the cake.

// Created on Thu January 5 2018

int main ()

{

return ;

|
|
|
printf ("Hello, World!\n"); €——Thisisthemain () function.
|
:
|

I A When you run your program,
the main function is executed.

A C program must have
exactly onemain () function.

Professional Development Workshop # B h lr’
Page :50 © 1993 - 2018 KIPR Dt a

Block of code

The list of actions that the function performs is defined inside a
block of code.

// Created on Thu January 5 2018

:_i_n_t_gléi_rl(_)_: _(_ - _I§I9_c|_<_|-|_e_ag_e[B This is a block of code.

Begin —3{ i
: printf ("Hello, World!\n");L(
I return 0O; ;
I |
|

A block of code should
always be preceded by
__________________________ a block header, which is
the line just before the {

A block is defined between a
beginning curly brace { and an
ending curly brace }

Professional Development Workshop # E h ll‘s’
Page :51 © 1993 - 2018 KIPR Dt a

Programming statements

Inside the block of code
// Created on Thu January 5 2018 (between the { and } braces),
we write lines of code called

b s :
int main() programming statements.

Statement #2 > ireturn 0 <€ Each programming statement
} is an action to be executed by
the computer (or robot)
in the order that it is listed.

Statement #1 - .prlntf("Hello World'\n")l \

There can be any number of
programming statements
within a block of code.

Professional Development Workshop # E h llﬁ’
Page :52 © 1993 - 2018 KIPR Dt a

Page

:53

Ending a programming statement

// Created on Thu January 5 2018

int main ()

{ _ .
- v . .
return 0f; (<€ ’\ ends with a semicolon ;
} (unless it is followed by a new

block of code).

This is similar to an English sentence, which ends with a period.

If an English sentence is missing a period, then it is a run-on sentence.

Professional Development Workshop # E h ll“’
© 1993 - 2018 KIPR Dt a

Ending the main function

// Created on Thu January 5 2018

int main ()

(The main function ends with a
printf ("Hello, World!\n"); return statement, whichis a
\return 0;! <€ response or answer to the

} computer (or robot).

T In this case, the “answer” back

The return statement is to the computer is

generally the last line before

the } brace.

Professional Development Workshop # E h lr
Page :54 © 1993 - 2018 KIPR Dt a

Page

Comments

The green text at the top of the program is called a “comment”.

' // Created on Thu January 5 2018 , Comments are helpful notes
that can be read by you or
your team—they are ignored
printf ("Hello, World!\n"); (not read) by the computer!

return ;

int main ()

{

Professional Development Workshop # E h l["
:55 © 1993 — 2018 KIPR Dt a

Text color highlighting

The KISS IDE highlights parts of a program to make it easier to read.
(By default, the KISS IDE colors your code and adds line numbers.)

* Includes in purple — File: main.c

\‘_) #include <kipr/botball.h>

® Comments in green — —3 // Commenting for the flow of code

3 int main()

® Text strings appearinred——___4 {
-E--~EFTEET?“Hellﬂ World\n");

= > return 0;
T}
g

Keywords appear in blue

Professional Development Workshop # B h lr
Page :56 © 1993 - 2018 KIPR Dt a

Print your name

Description: Write a program for the KIPR Wallaby that prints your name.

Solution:

Source Code Flowchart

\

int main ()

{] [Print your name.]
// 1. Print your name.

printf ("Botguy\n") ;

// 2. End the program.
return 0O;

ik

Professional Development Workshop # E h lr
Page :57 © 1993 - 2018 KIPR Dt a

Designing Your Own Program

Breaking down a task
Pseudocode, flowcharts, and comments
wait for milliseconds function

Debugging your program

Professional Development Workshop # E h lr
Page :58 © 1993 - 2018 KIPR Dt a

ﬁ\ N Complex tasks -> simple subtasks
S

®* Break down the objectives (complex tasks) into smaller objectives
(simple subtasks).

® Break down the smaller tasks into even smaller tasks.
Continue this process until each subtask can be accomplished by a

list of individual programming statements.

®* For example, the larger task might be to make a PB&J Sandwich
which has smaller tasks of getting the bread and PB&J ready and
then combining them.

Professional Development Workshop # B h lr’
Page :59 © 1993 - 2018 KIPR Dt a

Practice printing

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!” on one line, and then prints your name on the next line.

Analysis: What is the program supposed to do?

Flowchart
\/

[Print “Hello, World!”]

Pseudocode Comments

1. Print “Hello, World!” /7 1. Print "Hello, World!"

2. Print your name. // 2. Print your name. [Printy:fnam&]
3. Endthe program. // 3. End the program. V2
i | Return 0]
! In English, T Tt T T

I

| I
' write a list of actions | ! |

I |

.

Professional Development Workshop # B h lr’
Page :60 © 1993 - 2018 KIPR Dt a

Practice printing

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive (unigue) names!

Source Code

=" int main()
Pseudocode (Comments) T {
- // 1. Print "Hello, World!'"
printf ("Hello, World!\n");

int main ()

{ >
a 1A} I .
;; ; zr?nt aeto, Morid! Helps you write // 2. Print your name.
L oranE your name. the real code! printf ("Botguy\n") ;

// 3. End the program.
}

// 3. End the program.
~~~~ return

Execution: Compile and run your program on the KIPR Wallaby.

Professional Development Workshop # E h lr
Page :61 © 1993 - 2018 KIPR Dt a



Practice printing

Reflection: What did you notice after you ran the program?

®* The Wallaby reads code and goes to the next line faster than a blink of your eye.
At 800MHz, the Wallaby is executing millions of lines of code per second!

To control a robot, sometimes it is helpful to wait for some duration of time
after a function has been called so that it can actually run on the robot.

To do this, we use the built-in function called wait for milliseconds (),
later this can be shortened tomsleep ()

1

Let’s use this!

Professional Development Workshop # B h lr’
Page :62 © 1993 - 2018 KIPR Dt a



Using msleep ()

int main()

{
printf ("Hello ") ;
msleep ( ); // wait for 2500 ms

printf ("what is your name?\n") ;
return 0O;
}

What is this?

Another name for wait for milliseconds () iS msleep ().
It is identical and shorter to type, but more difficult to remember.

msleep ( ) isthe same aswait for milliseconds ( ).

Professional Development Workshop # E h lr’
Page :63 © 1993 - 2018 KIPR Dt a



Waiting for some time

Description: Write a program for the KIPR Wallaby that prints "Hello,
World!" on one line, waits two seconds, and then prints your name
on the next line.

Flowchart
. : 5
Analysis: What is the program supposed to do:

\/

[ Print “Hello, World!” ]

Pseudocode Comments

. |

1. Print “Hello, World!” /7 1. Print "Hello, World!" I
|

|

|_ _______________________ '_______________;_I ————— i; ——————
3. Print your name. // 3. Print your name. Prlntyour name.
4. End the program. // 4. End the program. ﬁ

New!

Professional Development Workshop # B h lr’
Page :64 © 1993 - 2018 KIPR Dt a



Waiting for some time

Solution: Create a new project, create a new file, and enter your

pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive (unigue) names!

Pseudocode (Comments)

Source Code

{

/
/
/
/

/
/
/
/

1.
2.
3.
4,

int main ()

Print "Hello, World!"
Wait for 2 seconds.
Print your name.

End the program.

int main ()

{
// 1. Print "Hello, World!'"

printf ("Hello, World!'\n");

// 2. Wait for 2 seconds.
msleep ( ),

// 3. Print your name.
printf ("I'm Botguy\n") ;

// 4. End the program.
return

}

Execution: Compile and run your program on the KIPR Wallaby.

Page

165

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Reflection: What did you notice after you ran the program?

® Did your code work the first time you typed it in?

® Did you have any errors?

Professional Development Workshop # E h lr
Page :66 © 1993 - 2018 KIPR Dt a



Page

If you do not follow the rules of the programming language, then
the compiler will get confused and not be able to translate your
source code into machine code—it will say “Compile Failed!”

The Wallaby will try to tell you where it thinks the error is located.

The process of trying to resolve this error is called “debugging”.

To test this, remove a ; from one of your programs and compile it.

® How about if you remove a " from one of your printf statements?

® What if you type msleep as Msleep?

167

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Debugging Errors

line # : col # (the error is on or before line # 6)

Shome/root/Documents/KISS/Default Uﬁer";'hewgrc;’main.cxILunctinn 'main’:
fhome/root/Documents/KISS/Default User/hey/src/main.c:6:5: error: expected ';' before 'return’

return @; A

[———===- » “ expected ; ” (semicolon)

File: main.c
1 #include <kipr/botball.h> |
2 s T T T T T T T T T T T T T ST TS ST T s s T e s T e ]
3 int main() | When there is an error, you can ignore the first error line |
. . ) |
dl I (“In function ‘main’”)and read the next to see what
5 printf("Hello World\n") €& = = = = the first . If h lot of tart fixi I
" return 03 : e first error is. If you have a lot of errors, start fixing |
70y , them from the top going down. Fix one or two and :
B | recompile. i

Lo |

______________________________________________________ :

eSOy,
/\(fnmpuatmn Falle::l)

-~
‘—___——’

JShome/root/Documents/KISS5/Default User/hey/src/main.c: In function '‘main’:
Fhome/root/Documents/KISS5/Default User/hey/src/main.c:6:5: error: expected ';' before "return’

Professional Development Workshop # B h lr
Page :68 © 1993 - 2018 KIPR Dt a

| |
| |
1 |
| |
1 |
| Compilation Failed |
1 |
| |
1 |
| |



Moving the DemoBot with Motors

Plugging in motors (ports and direction)
motor functions

Professional Development Workshop # E h lr
Page :70 © 1993 - 2018 KIPR Dt a



" Check your robot’s motor ports

®* To program your robot to move, you need to know
which motor ports your motors are plugged into.

®* Computer scientists tend to start counting at 0, so the
motor ports are numbered 0, 1, 2, and 3.

Professional Development Workshop # B h lr’
Page :71 © 1993 - 2018 KIPR Dt a



I Motor Labels are
l ' on the Case

Motor Ports 0, 1, 2,and 3

Professional Development Workshop # B h lr
Page :72 © 1993 — 2018 KIPR Dt a



Plugging in motors

®* Motors have red wire and a black wire with a two-prong plug.
®* The Wallaby has 4 motor ports numbered 0 & 1 on left, and 2 & 3 on right.

®* When a port is powered (receiving motor commands), it has a light that glows
green for one direction and red for the other direction.

® Plug orientation order determines motor direction.
® By convention, green is forward (+) and red is reverse (-)

e Unless you plug in the motors “backwards”.

Motor Port #2

Drive motors have

Motor Port #3 a two-prong plug.

Professional Development Workshop # E h lr
Page :73 © 1993 - 2018 KIPR Dt a



DemoBot Motor Ports O (right wheel) and 2 (left wheel)

Professional Development Workshop # B h lr
Page :74 © 1993 - 2018 KIPR Dt a



Motor direction

You want your motors going in the same direction;
otherwise, your robot will go in circles!

® Motors have a red wire and a black wire with a two-prong plug.

®* There is no left side or right side.

® You can plug these in two different ways:
® One direction is clockwise, and the other direction is counterclockwise.
® The red and black wires help determine motor direction.

=

Professional Development Workshop # B h lr’
Page :75 © 1993 - 2018 KIPR Dt a

12 21



There is an easy way to check this!

®* Manually rotate the tire, and you will see an LED light up by the motor port
(the port # is labeled on the board).

® |f the LED is green, it is going forward (+).

® |f the LED is red, it is going reverse (-).

ey ST L L i R R T S S R R S R

® Use this trick to check the port #'s and direction of your motors.

® |f oneis red and the other is green,
turn one motor plug 180° and plug it back in.

® The lights should both be green if the robot is moving forward.

Professional Development Workshop # E h lr
Page :76 © 1993 - 2018 KIPR Dt a



L2 Motors and Sensors

[_Heme ]

Programs

I it I
I I IR e
i \MM‘}““ e

Motors and Sensors

Settings

b 87%

Motors J [.r Sensor Graph ; .]
l Servos ] [ = Sensor List ]
86%

Page

277

(Crome ) Back )[_clear Position

[ @ Motor O

b JPosition:

0

Power l % Velocity

|

Stop

Professional Development Workshop

© 1993 - 2018 KIPR

#Botball



Common motor functions

There are several functions for motors.

------------- . We will begin with motor.
Motor port # :

(between 0 and 3)

motor (U, IR ————————————————— e T T P e T P T

A positive number should drive
the motor forward; if not,
rotate the motor plug 180°.

// Turns on motor port #0 at 100% power.
// Select any power between -100% and 100%.

|

|

|

|

|

|

|

|

msleep ( ) ; A negative number should |
i o ] drive the motor reverse. :
// Wait for the specified amount of time. |
|

|

|

|

|

|

|

|

If two drive motors are plugged
in in opposite directions from
each other, then the robot will

go in acircle.

ao();
// Turn off all of the motors.

Professional Development Workshop # E h lr
Page :78 © 1993 - 2018 KIPR Dt a



Using motor and ao

int main()

{
motor (O, )
motor (-2, )
msleep ( ),
ao();
return 0O;

Professional Development Workshop # E h lr
Page :79 © 1993 - 2018 KIPR Dt a



Until you are familiar with the functions that you will be using,
use this cheat/hint sheet as an easy reference.

Copying and pasting your own code is also very helpful.

printf ("text\n") ; //
msleep (# milliseconds) ; //
motor (port #, % velocity); //
motor power (port #, % power); //
mav (port #, velocity); //
mrp (port #, velocity, position); //
ao(); //
enable_servos(); //
disable_servos() ; //
set_servo _position(port #, position); //
wait for light(port #); //
wait for touch(port #); //
analog (port #) //
digital (port #) //
shut_down_in(time in seconds); //

Prints the specified text to the screen
Another name for wait for milliseconds (identical)

Turns
Turns

on motor with port # at specified % velocity
on motor with specified port # at specified % power

Move motor at specified velocity (# ticks per second)
Move motor to specified relative position (in # ticks)
All off; turns all motor ports off

Turns
Turns
Moves
Waits
Waits
Get a
Get a
Shuts

on servo ports

off servo ports

servo in specified port # to specified position
for light in specified port # before next line
for touch in specified port # before next line
sensor reading from a specified analog port #
sensor reading from a specified digital port #
down all motors after specified # of seconds

Professional Development Workshop
Page :80 © 1993 — 2018 KIPR

#Botball




Page

Access the Wallaby documentation by selecting the Help button in the KISS IDE

ece g KIPR Software Suite %\ +
€ | (D | 192.168.125.1:8B88/#/apps/kiss?project=My First Project&file=main.c&cat=src @ Q search
B [ [ ) & = % >
Save main.c File Menu Project Menu Undo Redo Indent Compile My First Project Bun

#include <kipr/botball.h>

1

2

3 int main()

4 {

5 printf("Hello Worldi\n");
6
8

return 0;

}

Project Explorer <
Student Name Fol| <88 2t

+ Add Project

My First Project
Source Files

[ main.c

Professional Development Workshop
:81 © 1993 — 2018 KIPR

#Botball



Moving the DemoBot

Description: Write a program for the KIPR Wallaby that drives the
DemoBot forward at 80% power for two seconds, and then stops.

Analysis: What is the program supposed to do? Flowchart
Pseudocode Comments , \/ ‘
1. Drive forward at 80%.// 1. brive forward at 80%. D”"ef”ia;j 2t 80%.
2 Wait for 2 seconds. // 2. wait for 2 seconds. ( i

Wait for 2 seconds.
3. Stop motors. // 3. Stop motors. N
4. End the program. // 4. End the program. [ Stop motors. ]

\/

Professional Development Workshop # B h lr’
Page :82 © 1993 - 2018 KIPR Dt a



Moving the DemoBot

Solution: Create a new project, create a new file, and enter your
pseudocode (as comments) and source code in the main function.

®* Note: remember to give your project and file descriptive, unigue names!
Source Code

_-" int main()
LT {
Psuedocode (Comments) .- // 1. Drive forward at 80%.
-~ motor (0, )
int main () motor (Z, )
{
// 1. Drive forward at 80%. // 2. Wait for 2 seconds.
// 2. Wait for 2 seconds. msleep ( ),
// 3. Stop motors.
// 4. End the program. // 3. Stop motors.
} ao();
\‘\\ // 4. End the program.
\‘\\ return 0O;
\\\\ }

Execution: Compile and run your program on the KIPR Wallaby.
Professional Devel Worksh ©
Page 183 O 1993 S J0TG KPR #Botball




Moving the DemoBot

Reflection: What did you notice after you ran the program?

® Did the DemoBot move forward?

® Positive (+) numbers should move the motors in a clockwise direction
(forward); if not, rotate the motor plug 180° where it plugs into the
Wallaby.

® |f your robot moves in a circle, one motor is either not moving (is it plugged
in?) or they are moving in opposite directions (rotate the motor plug 180°).

®* Did the DemoBot drive straight?

®* How could you adjust the code to make the robot drive straight?
®* How can you make the robot drive backwards?

®* How can you make the robot turn left or right?

Professional Development Workshop # B h lr’
Page :84 © 1993 - 2018 KIPR Dt a



Robot driving hints

Remember your # line:
positive numbers (+) go forward and negative numbers (-) go in reverse.

< Reverse Forward >

I I I
1T 1T 1T 1T 1T 1"
10 9 8 -7 6 5 -4 3 2 -

Driving straight: it is surprisingly difficult to drive in a straight line...
®* Problem: Motors are not exactly thesame. | 77"~~~ ""=~--- |

I
Problem: The tires might not be aligned perfectly. ' And many, many
| other reasons.. :

®* Problem: One tire has more resistance. e m e u
® Solution: You can adjust this by slowing down or speeding up the motors.
Making turns:

® Solution: Have one wheel go faster or slower than the other.
® Solution: Have one wheel move while the other one is stopped.

®* Solution: Have one wheel move forward and the other wheel move in reverse
(friction is less of a factor when both wheels are moving).

Professional Development Workshop # B h lr’
Page :85 © 1993 - 2018 KIPR Dt a



\,{\ 77* Activity 1 (connections to the game)

You have a paper copy of this activity in your registration packet.

1) Start with DemoBot completely within the starting box on mat A.

2) Move a stack of 4 poms that starts on circle 2 or 4 into the
appropriate garage. (green, orange, then blue)

3) The poms must come to rest completely within the colored garage.

4) The robots cannot push the poms over the solid lines that bound
the garages.

5) Advance extension: remove the top pom from the stack or make
sure that it is not touching the surface of the garage in which the
other poms are located.

1) See Team Home Base -> 2018 Resources -> Mechanical Engineering document.

Professional Development Workshop # B h lr’
Page :86 © 1993 - 2018 KIPR Dt a.



Variables

Some reasons to use a variable:

1.You don’t have to remember which port # is your right wheel
and which is your left — the computer remembers for you

2.1t makes your program easier to read and understand
3. Makes it easier to debug your program

4.You can do computation and store results in variables

Professional Development Workshop # B h lr’
Page :87 © 1993 - 2018 KIPR Dt a



Variables

® Avariable is a named container that stores a type of value
A variable has the following three components:
a. the type of data it stores (holds),

a b
b. the name, and Use int as your
c. the value. C data type if you want
int left ,/ to store wr_]ole
numbers (integers)

left = 2;

® Visualize/think of a variable like a storage space that holds a value
with a name on it...
* Left wheel motor port left| 2

®* Right wheel motor port

° etc right| 0

Professional Development Workshop # B h lr’
Page :88 © 1993 - 2018 KIPR Dt a



Variable names

Each variable is given a unique name so we can identify it...

® Variable names can be almost anything you would like.
® Variable names can contain letters, numbers, and underscores (“ ”).

® Variable names cannot begin with a number.
® Variable names should be meaningful and not “x”

An Example:

int right; // variable declaration
right = 0; // variable "initialization"
You can do the declaration and initialization at the same time
int right = 0;

Professional Development Workshop # B h lr’
Page :89 © 1993 - 2018 KIPR Dt a



Working with Variables

1. Creating/declaring a variable:

int left;

2. Setting a variable:

left = 7;

right ;

2. Using a variable:

left

Page :90

What is int?

int stands for “integer”. This
means that the variable 1eft
will have an integer (whole
number) value.

See the team home base: 2018 Game Manuals ->
Advanced Team Resources document for more
information on data types

Professional Development Workshop # B h lr’
© 1993 — 2018 KIPR Dt a


https://docs.google.com/presentation/d/1Qri0LWEH7ovnkzvLA5ercOjRevTRIOw79klduqo5dTI/edit#slide=id.g16beb6e05d_2_0

Using Variable for Drive Motors

1. Variable declarations should go inside a block of code (i.e., inside the { })
immediately after the starting curly brace (i.e., {) and before any other code.

int main () int main ()

{ {
Il left =2 int left = 2;
I/ right =0 int right = 0;
printf("Drive and turn\n®); Remove the forward printf("Drive and turn\n");

slashes from your
motor(2, 100); comments, add int motor(left, 100);
motor(0, 100); for the_f'_ata type ad”d motor(right, 100);
) since It IS Now coae )

msleep( ) add the semicolon msleep( );
motor(2, -50); motor(left, -50);
motor(0, 50); motor(right, 50);
msleep(-00); msleep(-00);
return 0O; return

} }

Professional Development Workshop # E h ll‘s’
Page :91 © 1993 - 2018 KIPR Dt a



Moving the DemoBot Servos

Plugging in servos (ports)
enable servos and disable servos functions

set servo position function

Professional Development Workshop # E h lr
Page :92 © 1993 - 2018 KIPR Dt a



* A servo motor (or servo for short) is a motor that rotates to a specified
position between ~0° and ~180°.

® Servos are great for raising an arm or closing a claw to grab something.

® Servo motors look very similar to non-servo motors, but there are differences...
® A servo has three wires (orange, red, and brown) and a black plastic plug.
® A non-servo motor has two gray wires and a two-prong plug.

Large servo ~

\ Micro servo

Professional Development Workshop # B h lr’
Page :93 © 1993 - 2018 KIPR Dt a



Servo Ports 0O, 1, 2,and 3

Professional Development Workshop # B h lr
Page :94 © 1993 — 2018 KIPR Dt a



Plugging in Servos

®* The KIPR Robotics Controller has 4 servo ports numbered 0 (left) & 1 (right) on
the left, and 2 (left) & 3 (right) on the right.

® Notice that the case of the KIPR Robotics Controller is marked:
® (S) for the orange (signal) wire, which regulates servo position

® (+) for the red (power) wire
® (-) for the brown (ground) wire (“the ground is down, down is negative”)

(S) signal wire
(+) power wire
(-) ground wire

Servo Port #3

Servo Port #2 NOTICE:
orientation

plugging in the
servos is very
important

Professional Development Workshop # E h ll@
© 1993 - 2018 KIPR OtDa



Servo positions

®* Think of a servo like a protractor...
® Angles in the ~180° range of motion (between ~0° and ~180°) are divided
into 2048 servo positions.

® These 2048 positions range from 0 to 2047, but due to internal mechanical
hard stop variability you should use ~150 to ~1900
(remember: computer scientists start counting with 0, not 1).

® This allows for greater precision when setting a position

(you have ~2048 different positions to choose from instead of just 180).
1024

®* The default position is 1024
(centered).

0] T

e s
Professional Development Workshop #B h lr’
Page :96 © 1993 - 2018 KIPR Dt a.



Abou J[ fhutlann ]ﬂ 1}1‘1‘11‘\‘ M\ ”1:1 e

Prorams

[L Heps ] i M ‘4 Gl 53.““;‘»:';:\‘ | “

Sensor Graph j

C AR

Sensor List

Page

197

86%

[L Homeﬁ ]L Back ]

q\“}i“‘ \‘ Il “ \ I S
L R hr D Dl sl

1023

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Select the

L

servo port
The current
servo position
Enable
Servos

Professional Development Workshop # B h lr’
Page :98 © 1993 - 2018 KIPR Dt a



Use your finger
to move the dial.

‘ B wioms) &k
J
oy T  Disable I |53 . * Disable 7
[k71.6% X B 55 5% [B69.5% X
e
Servo @ 2047 Servo @ 1513 Servo @ 537

(maxed out)

Do not push a servo beyond its limits
(less than ~150 or more than ~1900).
This can burn out the servo motor!

Professional Development Workshop # B h lr’
Page :99 © 1993 - 2018 KIPR Dt a



Page

:100

@ POI’t 2 i

@ Port 3_ ey

o Dlsable.

Currently the Disable button does NOT
disable the newer servos. To disable it
you will have to unplug the servo.

Professional Development Workshop
© 1993 — 2018 KIPR

Disable
Servos

#Botball



Centering the Servo Horn

« The Servo motor only has a range of motion (rotates) ~180
degrees, but you cannot see by looking at the motor where this
range of motion is located in relation to your robot

« Using the Servo Widget, enable the servo on your robot. When
you enable it, it will go to 1024. You can unscrew the servo horn on
your arm or claw and place it in the center of the rotation if it is not 1024

already in the correct position

Professional Development Workshop e #E h ll‘”
© 1993 — 2018 KIPR Dt a.

Page :101



Page

Servo functions

To help save power, servo ports by default are not active until they are
enabled.

Functions are provided for enabling or disabling all servo ports.
A function is also provided for setting the position of a servo.

enable servos(); // Enable (turn on) all servo ports.
set servo position(Z, ); // set servo on port #2 to position 925.

disable_ servos (); // Disable (turn off) all servo ports.

Note: it takes the servo TIME to move to a position so if you set it to another position
without giving it TIME the CODE runs very fast and does not wait for the servo to move

The default position when servos are enabled is 1024 (centered), which means that all
servos will automatically move to this position when enable servos is called.

You can “preset” a servo position by calling set _servo_position before calling
enable servos. This will make the servo move to this position rather than center.

Professional Development Workshop # B h lr
:102 © 1993 — 2018 KIPR Dt a



Wave the servo arm

Description: Write a function for the KIPR Wallaby that waves the

DemoBot servo arm up and down.

®* Remember to enable the servos at the beginning of your program,
and disable the servos at the end of your program!

®* Warning: The arm mounted on your DemoBot prevents the servo from freely
rotating to all possible positions (it will run into the KIPR Wallaby controller or

the chassis of the robot)!
® Do not keep trying to move a servo to a position it cannot reach, as this can burn out the servo
and also consume a lot of power from your robot.
® Use the Servo screen to determine the limits of the DemoBot arm, write these numbers down,
and then use these numbers in your code.

= Disable ]

1023 |

O 87%

Professional Development Workshop # B h lr’
Page :103 © 1993 - 2018 KIPR Dt a




Wave the servo arm

Description: Write a program for the KIPR Wallaby that waves the
DemoBot servo arm up and down. Write a function that does one
wave. Call it from your main function

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Enable servos. // 1. Enable servos.

2. Move servo to up. // 2. Move servo to UP.
3. Wait for 3 seconds. // 3. Wait for 3 seconds.
4. Move servo to down. // 4. Move servo to DOWN.
5. Wait for 3 seconds. // 5. Wait for 3 seconds.
6. Disable servos. // 6. Disable servos.

7. Endthe program. // 7. End the program.

Professional Development Workshop # E h llﬁ’
Page :104 © 1993 - 2018 KIPR Dt a



Analysis:

Wave the servo arm

e}
[(]
T &
=

[ Enable servos. ]

<

Move servo to Your UP limit.

¢

[ Wait for 3 seconds. ]

¢

[ Move servo to Your DOWN limit. ]

¢

[ Wait for 3 seconds. ]

<

[ Disable servos. ]




Commenting your servo port and

olacement within vour program

int main Make your comments after the first
{ / curly bracket and before the printf
// arm = 1 Arm is plugged into servo port 0
// down = 40 O ¢ 1 Arm down position is 400
// up = 1230 ¢ | Arm up position is 1230

printf ("Wave Servo Exercise\n");
return 0;

This (keeping track of your ports, positions, etc) could also be done in a
notebook, but what if you misplace that notebook?

Professional Development Workshop # E h lr
Page :106 © 1993 - 2018 KIPR Dt a



Using Variables for Servo Motors

int main ()

{

/arm =0
/[ up = 1230
/I down = 400

printf("Wave servo\n");
enable_servos();

set_servo_position(0, );
msleep( );
set_servo_position(0,400);
msleep( );
return 0;

}

Page :107

Remove the forward
slashes from your
comments, add int

for the data type and

since it is now code
add the semicolon

Professional Development Workshop
© 1993 — 2018 KIPR

int main ()

{

int arm = 0;
intup = ;
int down = )

printf("\Wave servo\n");
enable_servos();
set_servo_position(arm,up);
msleep( );
set_servo_position(arm,down);
msleep( );

return O;

#Botball



Using servo functions

What happens when we
set the servo position
before enable servos?

/

int main()
{ —

set servo position(Z, )/
enable_servos();

//msleep (1000) ;

set servo position(Z, ),
msleep ( )

set servo position(Z, ),
msleep ( ) ;

disable servos() ;

return 0O;

Professional Development Workshop # E h lr
Page :108 © 1993 - 2018 KIPR Dt a



*'ff* Activity 2 (connections to the game)

1. Start with your DemoBot at least partially within the starting box.
See extension for more practical application.

2. Using a servo controlled claw move large yellow cube(s) from the
orange garage into the blue garage.

3. The robot cannot touch the solid lines of any of the garages
Refer to your hand out for extension activities

Professional Development Workshop # B h lr’
Page :109 © 1993 - 2018 KIPR Dt a






Making Smarter Robots with Sensors

analog () and digital () sensors
wait for light () function

Professional Development Workshop # E h lr
Page :111 © 1993 - 2018 KIPR Dt a



®* You might have realized how difficult it is to be
consistent with just “driving blind”.

®* By adding sensors to our robots, we can allow them to
detect things in their environment and make decisions
about them!

® Robot sensors are like human senses!
® \What senses does a human have?
® \\What sensors should a robot have?

Professional Development Workshop #B h lr’
Page :112 © 1993 - 2018 KIPR Dt a.



Analog Sensors

® Range of values:

0-4095

® Ports:0-5

® Function: analog (port #)

® Sensors: =

® Light

® Small reflectance

® Large reflectance
® Slide sensor 95?

Page :113

Professional Development Workshop
© 1993 — 2018 KIPR

Digital Sensors

Range of values:

0 (not pressed) or 1 (pressed)
Ports:0—-9

Function: digital (port #)

Sensors:
® |arge touch *
® Small touch ‘
® |ever touch

#Botball



KIPR Robotics Controller sensor ports

B

| Sensor Plug
.| Orientation

|

: y
Tpds F SRR i RS E S R AR e

Digital Sensors Analog Sensors
Ports#0-9 Ports # 0-5

Professional Development Workshop # B h lr
Page :114 © 1993 - 2018 KIPR Dt a



Detecting touch

There are many digital sensors in your kit that can detect touch...

Select the one that can be easily attached and can easily detect the objects.

& & o

Large touch Small touch Lever touch

Professional Development Workshop # E h llﬁ’
Page :115 © 1993 - 2018 KIPR Dt a



/ Se!’\sor p.lug Closeup of sensor
/ orientation plug orientation
/
/

Y A
’ RN
I
[ Plug your : =5 e
I touch sensor | ""‘y_,‘!
1. . . ra sl
i into digital | '
| |
| port O i
\ ’

m s mEm s o -

Professional Development Workshop # E h lr
Page :116 © 1993 - 2018 KIPR Dt a



Reading Sensor Values

From the Sensor List

You can access the Sensor Values from the Sensor List on your

Wallaby
* This is very helpful to get readings from all of the sensors you

are using, and then you can then use the values in your code

v 8
[L Hone ]H i i M H l‘ \‘\:_u:‘: w ,."1';%“:,“:":. i _;h M ’
[ m Programs J
) [& Motors J [ﬁ' Sensor Graph ; ‘]
[., g Motors and Sensors J : e
- _ i . Servos J l = Sensor List ; ]
L Settings J /4 : -
/
7 /
i 87 [ 86%
o’
fm—————— £ - - -
| Select Sensor List !
e . T RN RN RN T L BN SRR BN B S
Professional Development Workshop # BDthalr

Page :117 © 1993 - 2018 KIPR



Check Touch Sensor on Wallaby
Screen

Analog Sensor 0 176
Analog Sensor 1 1102
Analog Sensor2 1124
Analog Sensor3 1134
Analog Sensor 4 638
Analog Sensor 5 904
Digital Sensor0 0
Digital Sens

Digital Sensor2 0

LiFe [[h88% =

Scroll down to the digital sensor and
read the value when your touch sensor
is pressed and when it is not pressed

Professional Development Workshop # B h lr’
Page :118 © 1993 - 2018 KIPR Dt a



(Lheme B
[ ] Programs ] N ’
[ Motors and Sensors ‘ LE s L V> Sensec Grapk} = J
[ a Setti | [ Servos ] [ = Sensor List ']
& ettings
Bl 87 [hss%
o N DO U e %
" Home J] BackJ i 0 J
| Analog 0 v ][Analog 0 - J @
2292 2293

Professional Development Workshop # BDthalr

Page :119 © 1993 - 2018 KIPR



Remember Your Sensor Functions

You call for the analog sensor value with a function
* You have 6 analog ports (0-5)

analog ( ) analog (1)

You call for the digital sensor value with a function
* You have 10 digital ports (0-9)

digital ( ) digital (8)

NOTE: when you call these functions they return an INTEGER value
into the “code” where they were called at the time the code is run.

Professional Development Workshop # B h lr’
Page :120 © 1993 - 2018 KIPR Dt a



Introduction to while loops

Program flow control with sensor driven loops
while and Boolean operators

Professional Development Workshop # E h lr
Page :123 © 1993 - 2018 KIPR Dt a



Program flow control with loops

®* What if we want to repeat the same “item/action” over and over

(and over and over)?
® For example, checking to see if a touch sensor has been pressed.

®* We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Professional Development Workshop # B h lr’
Page :124 © 1993 - 2018 KIPR Dt a



touched?
S
a

Drive forward.

\\ > Stop motors.

A4

Return 0

e

Professional Development Workshop # E h lr
Page :125 © 1993 - 2018 KIPR Dt a



Analysis: Flowchart

This part of the code
is the loop.

Drive forward.

\\ > Stop motors.

A4

Return 0

e

Professional Development Workshop # E h lr
Page :126 © 1993 - 2018 KIPR Dt a



while Loops

We accomplish this loop with a while statement.

while statements keep a block of code running

(repeating/looping) so that sensor values can be continually
checked and a decision made.

The while statement checks to see if something is true or false (via
Boolean operators).

while ( ) Notice there is no
{ \ terminating

semicolon after
. h hil
Code to execute while the while
the condition is true

statement

Professional Development Workshop # B h lr’
Page :127 © 1993 - 2018 KIPR Dt a



While Statement

Notice no
while (digital ( ) == 0) <« terminating
\ statement
/ / Boolean logic;
Type of sensor; Port number: > Greater than
analog, digital, analog (0-5) >= Greater than or equal
analog digital (0-9) < Less than
<= Less than or equal
== Equal to
{ I=Not equal to
motor (U, ) ;
motor (-, ) ; \Code to execute while the

} condition is true

Professional Development Workshop # E h ll‘s’
Page :128 © 1993 - 2018 KIPR Dt a



while loops

The while loop checks to see if a Boolean test is true or false...
* If the testis true, then the while loop continues to execute the block of code that immediately

follows it.
* If the testis false, then the while loop finishes, and the line of code after the block of code is

executed.

int main ()

{
// Code before loop
while (Boolean test)

{
// Code to repeat ...

}

// Code after loop

return ;

Professional Development Workshop # E h lr
Page :129 © 1993 - 2018 KIPR Dt a



while loops

The while loop checks to see if a Boolean test is true or false...
® |f the test is true, then the while loop continues to execute the block of code that

immediately follows it.
* |If the test is false, then the while loop finishes, and the line of code after the block of

code is executed.

int main ()

{
// Code before loop

while (Boolean test) <€ Block Header

Begin (no semicolon!)
— {
// Code to repeat ...

// Code after loop

return ;

}

Professional Development Workshop # E h lr
Page :130 © 1993 - 2018 KIPR Dt a



while and Boolean operators

The Boolean test in a while loop is asking a question:

Is this statement true or false?

®* The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:

Page

:131

Equal to (NOTE: two equal signs, not one which is an assignment!)
Not equal to

Less than

Greater than

Less than or equal to

Greater than or equal to

Professional Development Workshop # B h lr’
© 1993 - 2018 KIPR Dt a



Page

Boolean English Question True Example False Example
A == Is A equal to B? 5 == 5 ==
A '=B Is A not equal to B? 5 =4 5 =5
A< B Is A less than B? 4 < 5 5 < 4
A > B Is A greater than B? 5 > 14 4 > 5
4 <= 5
A <= B Is A less than or equal to B? 6 <= 5
5 <= 5
5 >= 4
A > B Is A greater than or equal to B? Eos= © 5 >= 6

:132

Professional Development Workshop

© 1993 - 2018 KIPR

#Botball




Description: Write a program for the KIPR Wallaby that drives the

DemoBot forward until a touch sensor is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode

1.

2.
3.
4

Page

Drive forward.

Loop: Is not touched?
Stop motors.

End the program.

:134

Comments

// 1. Drive forward.

// 2. Loop: Is not touched?
// 3. Stop motors.

// 4. End the program.

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Solution:

Source Code

Comments
int main ()
{
// 1. Loop: Is not touched?
// 1.1. Drive forward.

// 2. Stop motors.
// 3. End the program.

}

Page :135

int main()

{
printf ("Drive until bump\n") ;
while (digital(0) == 0)
{

motor (0,
motor (2,

}

) ;
) ;

ao();

return ;

}

Professional Development Workshop # E h lr
© 1993 - 2018 KIPR Dt a



What if you change O to 1?

1. Change the expected (test condition) value from 0Oto 1
2. Objective: Predict/describe what you think the robot will do
3. Run the program

#include <kipr/botball.h>

int main()

{
printf ("Drive until bump\n") ;
while (digital (0) == 1)
{
motor (0, 50) ;
motor (2, 50) ;
}
ao();
return 0O;
}

Professional Development Workshop # E h llﬁ’
Page :136 © 1993 - 2018 KIPR Dt a



!ﬁ]

: Learning about Analog Sensors

e Returns the analog value of the port (a value
in the range 0-4095). Analog ports are
numbered 0-5.

e Light sensors, slide, range finders and
reflectance are examples of sensors you

would use in analog ports. ,

: 7 Slide Sensor
Small IR Reflectance Sensor

“ET”-rangefinder Light Sensor

Professional Development Workshop # B h lr’
Page :137 © 1993 - 2018 KIPR Dt a



Measuring Distance

Infrared “ET” distance sensor

Professional Development Workshop # E h lr
Page :138 © 1993 - 2018 KIPR Dt a



Sensor plug
7 orientation
’
/
’
’
1
7 \
[ Plugyour
|
l analog |
| . I
| sensor into
| 2nalog bort o : “ET”-rangefinder
'\ &P ! (or Wall-E?)
7’

m s mEm s o -

Professional Development Workshop # E h lr
Page :139 © 1993 - 2018 KIPR Dt a



Analog Sensor0 176

Analog Sensor 1 1102
Analog Sensor2 1124
Analog Sensor3 1134

Analog Sensor 4 638

Analog Sensor 5 904 k — ”ET”-rangeﬁnder
Digital Sensor0 0 :

Digital Sens (or WaII-E?)
Digital Sensor2 0

e o Leme pmmmn N -
I Sensor PortsJ' L Sensor Values |

Read the values when your ET sensor is pointed at an object and
slowly move it toward/away from the object
(this is a distance sensor)

Professional Development Workshop # B h lr’
Page :140 © 1993 - 2018 KIPR Dt a



M’g;g ' ET (Wall - E) Sensor Information
(Y

* Low values: indicate greater distance (farther from robot)
* High values: indicate shorter distance (closer to robot)
 Optimal rangeis ~4” and up

 0” to 3.5” values are not optimal.

* Objects closer than the focal point (~¥4”) will have the same
readings as those far away.

Professional Development Workshop # B h lr’
Page :141 © 1993 - 2018 KIPR Dt a



ET sensor Values

Focal Point

Objects that are
inside the focal
point return a

smaller #, too Objects that are farther away return a smaller
close to object number

0400 900 ~2700 2600 2000 1500 900 0
‘ Useful range of the sensor

You may need to adjust the value chosen, up or down a little, for your desired
distance from an object. Optimal distance is about 4.5” away from the sensor.

Professional Development Workshop # E h llﬁ’
Page :142 © 1993 - 2018 KIPR Dt a



Page

Using the sensor values you should see that the farther away an
object is the lower the value returned. The closer an object is
the higher the value until you get within ~4” of the sensor.

1. Extend your arm in front of you with your thumb pointed up.

2. Focus on your thumb and then slowly bring your thumb
toward your face.

3. What happens when your thumb gets close to your face?

— Did it get blurry? Yes! It got within the focal point of your
eyes (where you could focus on it and make it clear)

4.The ET sensor also has a focal point and if the object is too
close the sensor cannot tell if it is close or far away.

5. When attaching your ET sensor to your robot consider the ~4”
distance from you sensor to its focal point

Professional Development Workshop # B h lr’
1143 © 1993 — 2018 KIPR Dt a.



Notice no

while (analog/( ) <= ?) <— terminating
\ statement

/ / Boolean logic

analog, digital, analog 0-5 >= Greater than or equal
digital 0-9 < Less than
<= Less than or equal
== Equal to
{
motor (0,40); I=Not equal to
motor ( ’ ) ; \ What you want it to repeat while
} checking to see if the while

statement is true

Professional Development Workshop # E h lr
Page :144 © 1993 - 2018 KIPR Dt a



Page

1. Open a new project, “name Find the Wall”.
2. Write and compile a program that will find the

wall and stop.
Pseudocode (Task Analysis)

//Print Find the Wall and Back Up

//Check the sensor value in analog port 1,
the value <= 27007

//Drive forward as long as the value is <=
2700 (or your determined value)

//Exit loop when value is 2700 (or your
determined value) or greater

//Shut everything off

Professional Development Workshop
1145 © 1993 — 2018 KIPR

Is

[ Print Find the.... ]

T

MOVE FORWARD

Is the
value <=

#Botball



#include <kipr/botball.h>

int main|()

{
printf ("Find the wall\n");
while (analog(0) <= )
{
motor (0,40);
motor (2,40);
}
ao();
return OU;
} Professional Development Workshop
Page :146 © 1993 — 2018 KIPR

#Botball



ET - Find the Wall and Back Up

Pseudocode (Task Analysis)
1.//Print Find the Wall and Back Up

2.//Check the sensor value in analog port 1, [ Print Find the.... ]
Is the value <=27007? G

3.//Drive forward as long as the value is MOVE FORWARD
<=2700 (or your determined value)

4.//Exit loop when value is 2700 (or your
determined value) or greater

5.//Back up for 3 seconds
6.//Shut everything off

[ Move Backards 3 seconds ]

Professional Development Workshop # E h ll‘s’
Page :147 © 1993 - 2018 KIPR Dt a



Page

Analog Sensor:

Small Top Hat Sensors

This sensor is really a short range reflectance sensor. There is an
infrared (IR) emitter and an IR collector in this sensor. The IR emitter
sends out IR light and the IR collector measures how much is

:; : :
= "‘

Amount of IR reflected back depends on surface texture, color and
distance to surface

This sensor is excellent for line following

Black materials typically absorb IR and reflect very little IR and white
materials typically absorb little IR and reflect most of it back

o If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black surface from a white surface

« Connect to analog port 0 through 5

Professional Development Workshop # B h lr’
1148 © 1993 — 2018 KIPR Dt a.




Reflectance Sensor Ports

1. Thisisan analog () sensor so plug it into any of your
analog ports O through 5

* Values can be between 0 and 4095
* Mount the sensor on the front of your robot so that it
is pointing to the ground and ~1/4” from the surface Ly

Surface

Professional Development Workshop # B h lr’
Page :149 © 1993 - 2018 KIPR Dt a



The small top hat (reflectance) sensor works best if mounted
~1/8 to ~1/4 inch off the surface such that the distance to the
ground does not vary much/at all while the robot moves.

( ‘
. You may use a medium or long bolt to :
'\ secure this sensor to the second hole. 1

Professional Development Workshop # E h lr
Page :150 © 1993 - 2018 KIPR Dt a



@  Motors ]

| :-‘1“ % PID Tuner ]

Page

Reading Sensor Values

From the Sensor List

You can access the Sensor Values from the Sensor List on your Wallaby

* This is very helpful to get readings from all of the sensors you are
using, and then know which values/ranges to use in your code

Analog Sensor 0
Analog Sensor 1

M!“

ensor Graph

S¢ Analog Sensor 2

Analog Sensor 3

f
=

Sensor R Analog Sensor 4

Analog Seffsor 5

Servos

J | ) /Camera

Digital Sensor 0

:151

/

/
/

Digital Serl-;
Digital Sedsor 2

176
1102
1124
1134
638

804 k

i \

0

IR 71.6% X

Professional Development Workshop
© 1993 — 2018 KIPR

LiFe

#Botball



With the IR sensor plugged into analog port #0
e Over a white surface the value is (~200)
e Over a black surface the value is (~3000)

Analog Sensor0 176 o
Analog Sensor 1 110A

Analog Sensor 2 1124y

Analog Sensor3 1134
Analog Sensor 4 638
Analog Sensor5 904 \

Analog Sensor0 3131

e
Analog Sensor2 1129
Analog Sensor 3 llis
Analog Sensor 4 2abs
Analog Sensor5 19}4

Analog Sensor 1

Digital Sensor0 0 | Digital Sensor0 0 \
Digital Sensc [ Digital Sens \
Digital Sensor2 0 Digital Sensor 2
" LiFe [The®
l———_
| =TT TETITTTETTTEDE RS RS S
VT b ! Your IR sensor is correctly !
{  Your IR sensor is correctly ! ' y o
I ' 'mounted when you have values 1
. mounted when you have | l o STEAPIE e e :
~ l l etween ~175-~ on the
I values between ~2900-~3100 , , White Surf :
l ite Surface.
\ on the Black Surface ) e NS e /

Professional Development Workshop # B h lr’
Page :152 © 1993 - 2018 KIPR Dt a.



Understanding the IR Values

1. Place your IR analog sensor in one of the analog ports (0-5).
2. After mounting your IR sensor, check value when sensor is over black on Mat
A, B or black tape

~1600

0 200 5000 4095

Less than or equal to 1600 Greater than 1600

My black threshold value is ~1600

Professional Development Workshop # E h ll‘s’
Page :153 © 1993 - 2018 KIPR Dt a



Find the Black Line

Pseudocode (Task Analysis) Lookinggo'r Black
1.//Prints looking for black line EEi'
2.//Check the sensor value in analog port MOVE FORWARD
0, <= 1600
3.//Drive forward as long as the value is
<= 1600 Is the
4.//Exit loop when value is 1600 or greater value <=

5.//Shut everything off

Found Black Line

T
Qﬂnthall“’

Professional Development Workshop
Page :154 © 1993 — 2018 KIPR




#include <kipr/botball.h>

int main ()

{
printf ("Find the black line\n");
while (analog(0) < )
{
motor (0, 72) ;
motor (2, /4) ;
}
ao();
return 0O;
}

Professional Development Workshop # E h lr
Page :155 © 1993 - 2018 KIPR Dt a



Motor Position Counter

Motor position counter functions
Ticks and revolutions

Professional Development Workshop # E h lr
Page :156 © 1993 - 2018 KIPR Dt a



Motor position counter

Each motor used by the DemoBot has a built-in motor position counter,
which you can use to calculate the distance traveled by the robot!

Motor Port #
k///’// (#0-3) “*-\\\\\>
get motor position_counter (0) — OR — gmpc (0)

// Tells us the number of ticks the motor on port #0 has rotated.
// Note: “gmpc” is shorthand for “get motor position counter”.

Motor Port #

(#0-3) ““---~3
clear_moto:_position_counter(‘ff/// — OR — cmpc(0) ;

// Resets the tick counter to 0 for the motor on port #0.
// Note: “cmpc” is shorthand for “clear motor position counter”.

Similar to how a clock is divided into

® The motor pOSition is measured in “ticks”. 60-second intervals (ticks). >

®* Botball motors have approximately 1400 ticks per revolution.
® Use wheel circumference divided by 1400 to calculate distance!

Professional Development Workshop # E h ll‘s’
Page :157 © 1993 - 2018 KIPR Dt a



Seeing Counters on Wallaby

You can access the Motors from the Motors and Sensors section

* This is very helpful to test your motors and see the actual
motor position counters “in action”

T —————
[L Home I”L L i
[i Programs ]
) & | et Sensor Graph  °
>[ +  Motors and Sensors J [ k\ e
= : > [ Servos * ] [ = Sensor List , ]
L Settings ] 3 \ ) Q ‘ -
\
\
i 87% s [k 86%
Pyp———  ——— -
! Select Motors '
e S S BN BN DR NN DN DN DN DN DL S

Professional Development Workshop # B h lr’
Page :158 © 1993 - 2018 KIPR Dt a.



Select motor port (allows you to To clear (reset) the counter
select the motor of your choice)

You can also place your robot on a surface and roll it forward

Motor Position
in “ticks”

[ 8 Motar o 7 w |Position:

¢ +6 | Use your hand to

(@ swop ] rotate the robot’s

' wheel (plugged into

port 0) and watch the
position counter.

0

‘ What happens if you
Power [EENGosly turn the wheel in the
opposite direction?

to measure the # ticks from a starting position to another
location or object

Page

Professional Development Workshop # B h lr’
1159 © 1993 — 2018 KIPR Dt a



Using motor position counter functions

How many revolutions
will the motor rotate?

/

int main()
{
clear motor position counter(2?);
while (get _motor position counter(”) < )
{
motor (U,
motor (-,
}
ao();
return 0O;

) ;
) ;

Professional Development Workshop # E h lr
Page :160 © 1993 - 2018 KIPR Dt a



Drive to a Specific Point

Description: Write a program that drives the DemoBot forward to a
specific point then stops.

Place the robot in the start box of JBC mat A and using the motors/widget screen:
1) reset the left motor counter,
2) manually push the robot forward to circle 9 on the mat and
3) visually record/remember the tick count.

Write your program to drive forward that many “ticks”

Challenge: Modify your program to back up to where it started (or
better, turn around (180 degrees) and back to where it started).

Pseudocode

Generate it!

Professional Development Workshop # B h lr’
Page :161 © 1993 - 2018 KIPR Dt a



Solution:

Source Code

Comments Dl _
A int main ()
: i / {
J{-nt main () / int distance = ; // in ticks
// 1. Reset motor position clear motor position counter (0);
counter.
/] 2. Loop: Is counter < my while (get motor position counter (U) < distance)
distance? { motor ( ) ;
// 2.1. Drive forward. motor ( : );
// 3. Stop motors. }
// 4. End the program. ao();
} \
\ return 0;

Page :162

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Drive to a Specific Point

Reflection: What did you notice after you ran the program?

®* How far did the robot travel? Was it always the same (you tested it more than
once, right)?

®* Your robot most likely went FURTHER than you programmed it to (check the motors screen
after it stops to see the actual final tick count). Why? Hint: inertia

®* Change your loop so that it actually goes to “distance - (actual - desired)”:
while (get motor position counter(U) < distance - (4832 - distance))

®* How could you modify your program to travel a specific distance in millimeters?
(Hint: Use wheel circumference (in mm) divided by 1400 to calculate number of mm
per tick!)

(Hint: Consider writing a function (later) with an argument for the distance.)

®* How could you modify your program to accurately turn left or right?

Professional Development Workshop # B h lr’
Page :163 © 1993 - 2018 KIPR Dt a



Drive to a Specific Point

Solution (2): including backing up

Page

:164

int main()

{

int distance = ; // in ticks

clear motor position_counter (0) ;
while (get _motor position_ counter (U) < distance)

{

motor (0, ),
motor (2, ),
}
ao();

// now back up to position/tick count 0
// note: clear counter not needed this time
while (get motor position counter (0) > 0)

{

motor (0, -50);
motor (2, -50);
}
ao();
return 0O;

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Drive to a Specific Point

Solution (3): including turning around then going home

int main()

{

int distance = ; // in ticks

clear motor position_counter (0) ;
while (get motor position counter (U) < distance)

{

motor (0, ),
motor (2, ),
}
ao();

// Add code to turn around here (however you want)
ao();

// Now drive forward, back to your starting point
clear motor position_counter (0) ;
while (get motor position counter (U) < distance)
{
motor (0, ),
motor (2, )

}

ao() ;

4

return ;

Professional Development Workshop # E h lr
Page :165 © 1993 - 2018 KIPR Dt a




Page

Making a Choice

Program flow control with conditionals
if-else conditionals
if-else and Boolean operators
Using whileand if-else

Professional Development Workshop # E h lr
1166 © 1993 — 2018 KIPR Dt a.



Program flow control with conditionals

®* What if we want to execute a block of code only if certain
conditions are met?

®* We can do this using a conditional, which controls the flow of the
program by executing one block of code if its conditions are met
or a different block of code if its conditions are not met.

® This is similar to a loop, but differs in that it OI"I|V executes once.

Professional Development Workshop # B h lr’
Page :167 © 1993 - 2018 KIPR Dt a



o
\*\ " Program flow control with conditionals
it

Is it
YES ' touched? NO

[ Print “Touched!” [ Print “Not touched!” ]

S

Code after conditional.

-

Professional Development Workshop # E h llﬁ’
Page :168 © 1993 - 2018 KIPR Dt a




This part of the code
is the conditional.

Is it
touched?

[ Code after conditional. ]

S

Professional Development Workshop # E h llﬁ’
Page :169 © 1993 - 2018 KIPR Dt a




Program flow control with conditionals

Pseudocode Comments
1. |If:Is touched? // 1. If: Is touched?
1. Print “Touched!”. // 1.1. Print “Touched!”.
2. Else. // 2. Else.
1. Print “Not touched!”. // 2.1. Print “Not touched!”.
3. Endthe program. // 3. End the program.

In the C programming language, :
| we accomplish this with an i£-else conditional. |

Professional Development Workshop # E h ll‘s’
Page :170 © 1993 - 2018 KIPR Dt a



if-else conditionals

The if-else conditional checks to see if a Boolean test is true or false...

code is executed instead.

int main ()

{

if (Boolean test)
{
// Code to execute ...

}

else

{
// Code to execute ...
}

// Code after conditional

return ;

Professional Development Workshop
Page :171 © 1993 — 2018 KIPR

If the test is true, then the if conditional executes the block of code that immediately follows it.
If the test is false, then the if conditional does not execute the block of code, and the else block of

#Botball



Using i f-else conditionals

What is this?
/
int main () K/////
{
if (digital(s) == 1) «——|What does this say?
{
printf ("Touched!\n") ;
}
else
{
printf ("Not touched!\n") ;
}
return O;
}

Professional Development Workshop # E h lr
Page :172 © 1993 - 2018 KIPR Dt a



Using i f-else conditionals

int main ()

{
if (digital(2) == 1)
{
printf("Touched!\n#?t\\\\\\

N . R
}1 - Notice: no semicolon!
else
{ (Why not?)
printf ("Not touched!\n") ;
}
return ;

Professional Development Workshop # E h lr
Page :173 © 1993 - 2018 KIPR Dt a



if-else conditionals

int main ()

{

// Code before conditional

if (Boolean test)

{

. Theelsels // Code to execute if test is true
immediately below > 777

the } brace of the ————
else
if block of code!

// Code to execute if test is false

return 0O;

Professional Development Workshop
Page :174 © 1993 — 2018 KIPR

#Botball



Page

1175

if (digital(0) == 0)
{

// Code to execute

}

else

{

// Code to execute

if (analog(2) < )
{

// Code to execute
}
else
{

// Code to execute

}

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Example using while and if-else

int main ()

{

while (digital(0) == 0) €—

{ What do these
1f (analog(V) > )< lines of code say?
{

printf("It's dark in here!\n");
}

else

{
printf ("I see the light!\n");
}

} // loop ends when button is pressed
// touched something

return ;

Professional Development Workshop # E h lr
Page :176 © 1993 - 2018 KIPR Dt a



Using while and if-else

int main ()

{

A while (digital(0) == 0)
{
A*if (analog(0) > )
Notice how the { and } ¢ printf("It's dark in here!\n") ;
braces line up for each }
block of code! else

¢>printf("I see the light!\n");

\

} // loop ends when button is pressed
return 0O;

}

Professional Development Workshop # E h lr
Page :177 © 1993 - 2018 KIPR Dt a



ET Find the Wall and Back Up then

Drive forward

Pseudocode (Task Analysis)

1

4.//Exit loop when a button is pressed
5.//Shut everything off

Page

.//Check the a button, if it is not
.//Drive forward as long as the wvalue

.//Drive backwards as long as the wvalue

pressed

1is <=2700 (or your determined value)

is >=2700 (or determined value)

Professional Development Workshop
1178 © 1993 — 2018 KIPR

If the a
button is not

\ i Stop motors.

pressed?

N

Return 0.

@ &
4+ Bl




This example is a QUICK solution
(not a game winning solution).

Generally this sensor
should be mounted ~4
inches back from the
“front” of the robot (or
items it will be sensing)
to avoid the focal point
problem ever occurring.

Professional Development Workshop # E h lr
Page :179 © 1993 - 2018 KIPR Dt a



Sample Solution

#include <kipr/botball.h>
int main ()

{
printf ("Drive to the wall\n");

while (digital(0) == 0) // Touch sensor not touched

{

if (analog(0) <= ) // Far away drive forward

{

motor (0,80) ;
)

motor (2, ;
}
if (analog(0) > ) // Too close back up
{
motor (0,-80) ;
motor (2,-80) ;
}
}
ao();
return 0O;

} .
Professional Development Workshop # EDthalr

Page :180 © 1993 - 2018 KIPR



Maintain distance

Description: Write a program for the KIPR Wallaby that makes the
DemoBot maintain a specified distance away from an object, and stops
when the touch sensor is touched.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Loop: Is not touched? // 1. Loop: Is not touched?
1. |If:Is distance too far? // 1.1. If: Is distance too far?
1. Drive forward. // 1.1.1. Drive forward.
2. Else. // 1.2. Else.
1. If: Is distance too close? // 1.2.1. If: Is distance too close?
1. Drive reverse. // 1.2.1.1. Drive reverse.
2. Else: // 1.2.2. Else.
1. Stop motors. // 1.2.2.1. Stop motors.
2. Stop motors. // 2. Stop motors.
3. Endthe program. // 3. End the program.

Professional Development Workshop # E h ll‘s’
Page :181 © 1993 - 2018 KIPR Dt a



Maintain distance

Solution:

Comments

Source Code

int main()
{
// 1. Loop: Is not touched?

// 1.1. If: Is distance to far?

// 1.1.1. Drive forward.

// 1.2. Else.

// 1.2.1. If: Is distance too close?
// 1.2.1.1. Drive reverse.

// 1.2.2. Else.

// 1.2.2.1. Stop motors.

// 2. Stop motors.
// 3. End the program.

Page :182

int main|()

{
while (digital(0) == 0)
{

if (analog(5) < )
{
motor (0, )
motor (2, )

}

else

{

4

if (analog(-) > )
{
motor (0, -75);
motor (2, -75)

}

else // sensor wvalue is 1800-2600

{

4

ao();
}

}
} // end of loop

ao() ;
return ;




Reflectance sensor for line-following

For this activity, you will need a reflectance sensor.
® This sensor is really a short-range reflectance sensor.
®* There is both an infrared (IR) emitter and an IR detector inside of this sensor.
* IR emitter sends out IR light = IR detector measures how much reflects back.

®* The amount of IR reflected back depends on many factors, including surface
texture, color, and distance to surface.

This sensor is excellent for line-following!
* Black materials typically absorb most IR - they reflect little IR back!
®* White materials typically absorb little IR - they reflect most IR back!

® If this sensor is mounted at a fixed height above a surface, it is easy to
distinguish a black line from a white surface.

Professional Development Workshop # B h lr’
Page :183 © 1993 - 2018 KIPR Dt a.



Attach your reflectance sensor

® Attach the sensor on the front of your robot so that it is pointing
down at the ground and is approximately 1/8” from the surface.

* Areflectance sensor is an analog sensor, so plug it into any of
analog sensor port #0 — 5. Port O for this example.
® Recall that analog sensor values range from 0 to 4095.

Sensor Plug
Orientation

I Analog Sensor '
Ports#0-5 |

Professional Development Workshop # E h lr
Page :184 © 1993 - 2018 KIPR Dt a




The small top hat (reflectance) sensor works best if mounted
~1/8 to ~1/4 inch off the surface such that the distance to the
ground does not vary much/at all while the robot moves.

( ‘
. You may use a medium or long bolt to :
'\ secure this sensor to the second hole. 1

Professional Development Workshop # E h lr
Page :185 © 1993 - 2018 KIPR Dt a



@  Motors ]

| :-‘1“ % PID Tuner ]

Page

Reading Sensor Values

From the Sensor List

You can access the Sensor Values from the Sensor List on your Wallaby

* This is very helpful to get readings from all of the sensors you are
using, and then know which values/ranges to use in your code

Analog Sensor 0
Analog Sensor 1

M!“

ensor Graph

S¢ Analog Sensor 2

Analog Sensor 3

f
=

Sensor R Analog Sensor 4

Analog Seffsor 5

Servos

J | ) /Camera

Digital Sensor 0

: 186

/

/
/

Digital Serl-;
Digital Sedsor 2

176
1102
1124
1134
638

804 k

i \

0

IR 71.6% X

Professional Development Workshop
© 1993 — 2018 KIPR

LiFe

#Botball



Reading Sensor Values

From the Sensor List (Cont.
With the IR sensor plugged into analog port #0

- |

* Over a white surface the value is (~200) 1\ i  tourvaueswillbe .
] , different, but the process ;

* Over a black surface the value is (¥3000) J '  willbethesame! |

Analog Sensor 0
Analog Sensor 1 1]‘&2
Analog Sensor 2 11p
Analog Sensor 3 113€
Analog Sensor 4 638

Analog Sensor 5 904 1

Analog Sensor0 3131
Analog Sensor1 1
Analog Sensor2 1129
Analog Sensor3 1126
Analog Sensor 4 2458 \
Analog Sensor 5 1914 \

Digital Sensor 0 0 \ Digital Sensor 0 0 \
Digital Sens¢ \ Digital Sens \
Digital Sensor2 0 \ Digital Sensor 2

\ ( Lo \

Value of ~3000 I Value of ~200

i (Black Surface) 1| i (White Surface) 1|
——————— 4 -—— e m— m— = ==

Professional Development Workshop # B h lr’
Page :187 © 1993 - 2018 KIPR Dt a.



Line Following Strategy Using

the Reflectance Sensor

Line Following Strategy: while - Is the button pushed?
Follow the line’s right edge by alternating the following 2 actions:
1. i £ detecting dark, arc/turn right

2. i f detecting light, arc left.

3. Think about a sharp turn. What will your motor function look like? Remember the
bigger the difference between the two motor powers the sharper the turn.

Professional Development Workshop # B h lr’
Page :188 © 1993 - 2018 KIPR Dt a



Understanding the IR Values

1. Place your IR analog sensor in one of the analog ports (0-5).
2. After mounting your IR sensor, check that the values are: white between

175-225 and black between 2900-3100; write down your values.

3. Find your threshold or middle value (approximately)
4. This number will be the value you need for the find the black line activity.

Turn left 1600 Turn right

My white value is ~200 My black value is ~3000

Determine what your threshold or “half way”.
This example is ~1600.

Professional Development Workshop # B h lr’
Page :189 © 1993 - 2018 KIPR Dt a



Page

:190

Line-following

Is not
pressed?

Turn/arc right. Turn/arc left.

S,

\ # Stop motors.

\

Return 0

o

Professional Development Workshop # E h ll“’
© 1993 - 2018 KIPR Dt a



You must cover all values

Turn left Turn right
0 <= 1600 > 1600 4095
1600
(g ] (e ) |
— - / W
Assume all these Assume all these
~ — — values are WHITE values are BLACK
Stop motors. ~ e ~

{} This is the part of \

Return 0 the code that tells \

the Wallaby what
& \ to do when it sees /
black or white.
N 7

\——/

Professional Development Workshop # E h ll‘s’
Page :191 © 1993 - 2018 KIPR Dt a




By Activity 3 (connections to the game)
U

Starting with your DemoBot on one end of “JBC Mat 2” or
using a piece of dark tape, have the robot travel along the

path of the tape using the Top Hat sensor to determine the
robot path (line following).

Professional Development Workshop # B h lr’
Page :192 © 1993 - 2018 KIPR Dt a



Line-following

Solution: °
Ob ,' int main ()

@o / t : . .

&g // while (digital(0) == 0)
S/ .
“ if (analog(0) > )

/

{

Pseudocode (Comments) / motor (0, -10) ;
int main () motor (~, )
{ }

// 1. Loop: Is not pressed?
// 1.1. If: Is dark detected? else
// 1.1.1. Turn/arc left. {
// 1.2. Else:
// 1.2.1. Turn/arc right. motor (U, )
// 2. Stop motors. motor (2, -10);
// 3. End the program. }
} }
\
AN ao();
AN
\ return 0O;
e
\

Professional Development Workshop # E h lr
Page :193 © 1993 - 2018 KIPR Dt a



hange the threshold. Increase the “arc speed”.

int main()

{
prj ntf ("Follow the 1i Ile\n" ’ f O r the thresho d alue S )

while (digital(0) == 0)
{ way between the observed values.
?f (analog(0) > )< — Remember black reflects less IR than white so
motor (0, -10); the value is lower.
\ motor (2, 90); Notice the Boolean operators > 1600 or <= 1600
else Your value may be much lower due to lighting,
{ placement and turns
motor (0, ) ;
motor (2, -10);
\ } Also incréast e “arc speed” (by making the
ao () ; difference between the forward speed and

return backwards speed greater may have a significant

impact.

Professional Development Workshop # B h lr’
Page :194 © 1993 - 2018 KIPR Dt a



Page

:195

Homework

Game review
Game strategy
Workshop survey

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Homework for tonight:

same review

Visit http://homebase.kipr.org

Review the game rules on your Team Home Base.
®* We will have a 30-minute Q&A session tomorrow.

* After the workshop, ask questions about game rules in
the Game Rules Forum.
® You should regularly visit this forum.
® You will find answers to the game questions there.

Professional Development Workshop # B h lr’
Page :196 © 1993 - 2018 KIPR Dt a.


http://homebase.kipr.org/

Homework for tonight:

game stratesg

®* Break down the game into subtasks!

®* Write pseudocode and/or create flowcharts!

® Start with easy points—score early and score often!
®* Keep it simple and make sure it works.

® Discuss your strategy with your instructor tomorrow.

Professional Development Workshop # B h lr’
Page :197 © 1993 - 2018 KIPR Dt a



Homework for tonight:

ame strate

ASK . Think about the

What is the challenge? ' Engineering Design Process!
L
Are there requirements or

limitations?

What do we know already?

IMPROVE

Study test results. Modify
design to make it better. Test
it out again.

CREATE

Build solution based on
plan. TEST it out.

IMAGINE

Brainstorm possible solutions
Consider design options

PLAN

Choose the best
design. Draw a picture.

= K20CENTER



Homework for tonight:

workshop surve

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop # E h llﬁ’
Page :199 © 1993 - 2018 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

Welcome to the Botball Team Home Base

2018 Team Home Base

The Team Home Base is your resource for:

» Botball online project documentation
» Botball game FAQs
» Other Botball game related resources

Professional Development Workshop # E h lr
Page :200 © 1993 - 2018 KIPR Dt a



http://homebase.kipr.org/

[bonus] Drive Straight!

Description: Write a program for the KIPR Wallaby that drives the
DemoBot straight for 14000 ticks by adjusting the right motor power so
that the position of the left motor is the same (or close) to the right.

Analysis: How can you adjust the left motor’s position?

Pseudocode Comments
1. Reset motor position counters. // 1. Reset motor position counts.
2. Loop:Is counter < 140007? // 2. Loop: check right position.
1. Move left motor at 75% power // 2.1 power left motor at 75%
2. Isright wheel behind left? // 2.2 is right behind left counters
1.  True:speed up right // 2.2.1 slower: power right
motor at 100%
2. False: slow down right // 2.2.2 faster: power right
motor at 50%
3. Stop motors. // 3. Stop motors.
4. Endthe program. // 4. End the program.

Professional Development Workshop # E h ll‘s’
Page :201 © 1993 - 2018 KIPR Dt a



Drive Straight!

Solution:
Source Code
1
/| int main ()
I Aq
Il clear motor position counter (0);
Pseudocode (Comments) ! cmpe (2) 7
+ while (get_motor position_counter(”) < )
int main() ! {
{
// 1. clear both motor counters. motor (7, )
// 2. Loop: check left position _
// 2.1. power left motor at 75%. if (gmpe (U) < gmpc(2))
// 2.2. compare right to left counters. { ]
// 2.2.1. slower: right motor at 100% ) motoz (U, )i
// 2.1.2. faster: right motor at 50% else
// 3. Stop motors. {
// 4. End the program. motor (0, ) ;
} \ }
} }
ao();
return O;
}
Professional Development Workshop #E h ll‘”
Page :202 © 1993 — 2018 KIPR Dt a




Drive Straight

Reflection: What did you notice after you ran the program?

® Did the robot go straighter than in the previous program?

®* How could you use this technique whenever you wanted to drive straight?
(Hint: Consider writing a function with an argument for the distance.)

®* How could you modify your program to go straight at different speeds?

Professional Development Workshop # E h llﬁ’
Page :203 © 1993 - 2018 KIPR Dt a



Welcome back!

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Botball 2018

Professional Development Workshop

Prepared by the KISS Institute for Practical Robotics (KIPR)
with significant contributions from KIPR staff
and the Botball Instructors Summit participants

While waiting, work on yesterday’s exercises or build the Create DemoBot!

v2018-01-12r1
Professional Devel t Worksh ®
Page  :204 O 1903 2018 KIPR #Botball


https://www.surveymonkey.com/r/LCYB7RY

Day 2

® Botball Game Review

®* Tournament Code Template

®  Fun with Functions

®* Repetition, Repetition: Counting
®* Moving the iRobot Create: Part 1
®* Moving the iRobot Create: Part 2
® Color Camera

* iRobot Create Sensors

® Logical Operators

®* Resources and Support

Professional Development Workshop # B h lr’
Page :205 © 1993 - 2018 KIPR Dt a



Botball Game Review

Game Q&A
Construction, documentation, and changes
shut down_ in () function
wait for light() function

Professional Development Workshop # E h lr
Page :206 © 1993 - 2018 KIPR Dt a



You have 30 minutes...

Professional Development Workshop #E th lr
Page :207 © 1993 - 2018 KIPR D a



Professional Development Workshop # B h lr
Page :208 © 1993 — 2018 KIPR Dt a



Ideas on construction

Note: our competition tables are built
to specifications with allowable variance.

®* Do NOT engineer robots that are so precise that a 1/4” difference
in @ measurement means they are not successful.

® For example: the specified height of the tram assembly is set to be 13”
above the game surface, if the actual height was 13 %” off the surface, an
effector with too low of a tolerance may fail to do it’s job.

® Review construction documents (like the ones on the Home
Base!) to get building ideas.

® Search the internet for robots and structures to get building ideas.
® Test structure robustness before the tournament!

Professional Development Workshop # B h lr’
Page :209 © 1993 - 2018 KIPR Dt a.



Documentation

What?
® Botball Online Project Documentation (BOPD)

® Rubrics and examples are on the Team Home Base
®* NO NAMES OR SCHOOL NAMES ALLOWED ON SUBMISSIONS

When?

® 3 document submissions during design and build portion
® 1 onsite presentation (8 minute) at regional tournament

Why?
® To reinforce the Engineering Design Process
® Points earned in Documentation factor into the overall tournament scores!

See BOPD Handbook on the Team Home Base
for more information (rubrics and exemplars).

Professional Development Workshop # B h lr’
Page :210 © 1993 - 2018 KIPR Dt a



Changes this season

® See the Team Homebase for a document covering all
changes made in regards to Hardware, Rules, the
Wallaby, Software, and Documentation.

® Kit Parts —~11 new pieces (axle related), newer servos
(and related pieces), new igus® set, new sensor mounts

®* Game Rules — paper clips, pennies (for counterweight
purposes), challenge rule updates, external
communication rule updates, etc.

®* Resources — other updates can be found online.

Professional Development Workshop #B h lr’
Page :211 © 1993 - 2018 KIPR Dt a.



Page

Starting your programs with a light

The light sensor is a cool way to automatically start your robot
and critical for Botball robots at the beginning of the game.

The wait for light() function allows your program to run
when your robot senses a light.

® Note: It has a built-in calibration routine that will come up on the screen
(a step-by-step guide for this calibration routine is on a following slide).

The light sensor senses infrared light, so light must be emitted
from an incandescent light, not an LED light. =
e

® For our activities, you can use a flashlight.
The more light (infrared) detected, the lower the reported value.

Professional Development Workshop # B h lr
1212 © 1993 — 2018 KIPR Dt a



Sensor waiting functions

wait for light(3);
// Waits for the light on port #3 before going to the next line.

Professional Development Workshop # E h lr
Page :213 © 1993 - 2018 KIPR Dt a



Usingwait for light

What is this?

int main ()

{
wait for light(2);
printf ("I see the light!\n");
return

}

Professional Development Workshop # E h ll‘s’
Page :214 © 1993 - 2018 KIPR Dt a



Plug in your light sensor
(and get a flashlight (or top-hat sensor)!)

i

Sensor Plug
J Orientation

Digital Sensor / Analog Sensor
————————— Ports#0-9 Ports # 0-5
s . \ 4
| Plugyour Light
I Sensor into Analog = == == == == = /
1 Port #3. I
| S S — -’

Professional Development Workshop # B h lr
Page :215 © 1993 — 2018 KIPR Dt a



Use the sensor list

L 4 Motors and Sensors
[ m Programs J
: [a Motors ] [ A Sensor Graph .]
[., ~  Motors and Sensors J \ e
. : 5 Servos = Sensor List J
L Settings H \
Ik 87% [ 86%

lL Home )[ Back] s J

Analog Sensor 0 52 =
Analog Sensor 1 1130 —
Analog Sensor2 1156 L
Analog Sensor 3 1164

Analog Sensor 4 609

Analog Sensor5 927

Digital Sensor0 0

Digital Sensor1 0 ‘v

[h86%

Professional Development Workshop #B h lr’
Page :216 © 1993 - 2018 KIPR Dt a.




(Lheme B
[ ] Programs ] N ’
[ Motors and Sensors ‘ LE s L V> Sensec Grapk} = J
[ a Setti | [ Servos ] [ = Sensor List ']
& ettings
Bl 87 [hss%
o N DO U e %
" Home J] BackJ i 0 J
| Analog 0 v ][Analog 0 - J @
2292 2293

Professional Development Workshop # BDthalr

Page :217 © 1993 - 2018 KIPR



Starting with a light

Description: Write a program for the KIPR Wallaby that waits for a
light to come on, drives the DemoBot forward for 3 seconds, and

then stops. Flowchart
Analysis: What is the program supposed to do? N

* ) Wait for light

V4
Pseudocode Comments Drive forward
1. Wait for light // 1. Wait for light V2
) | ) ght. [ Wait for 3 seconds. ]

2. Drive forward. // 2. Drive forward. V
3. Waitfor3seconds. // 3. wait for 3 seconds. [Stop motors. ]
4. Stop motors. // 4. Stop motors.
5. Endthe program. // 5. End the program.

Professional Development Workshop #
Page :218 © 1993 - 2018 KIPR

otball



When you use the wait for 1light() function in your program,
the following calibration routine will run automatically.

CALIBRATE: sensor port #1 : CALIBRATE: sensor port #1
press ON when light is on press OFF when light is off
light on value 1s = 66 light on value is = 66

light off value is = 1008

I When the light is on (low vaIue) I I’When the light is off (high value),

I press the “Lightis On” button. | | press the “Light is Off” button. |

Note: For Botball, wait for light() should be
one of the first functions called in your program.

Professional Development Workshop
Page :219 © 1993 - 2018 KIPR

CALIBRATE: sensor port #1
press OFF when light is off
light on value is = 66
light off value is = 1009

Good callhraflonl

i @

piff = 94:&#-’\ITINL, FOR LIGHTS ON
Current re ng: 1009

[ ! ]\ Light is OFF j] i:*

’

You will get a “Good Calibration!”
message and moving red dot on
green bar when done correctly.

You will get a “BAD CALIBRATION”

| message when not done correctly, |

1 and you will need to run through |

| the routine again. |

— e —— oy,
-— = = -

#Botball



Solution:

Comments

Source Code

int main ()

{

// 1. Wait for light.

// 2. Drive forward.

// 3. Wait for 3 seconds.
// 4. Stop motors.

// 5. End the program.

int main ()

{
wait for light(3);

motor (0, ):; //forward
motor (-, ) ;

msleep ( ) ;

ao();

return ;

Execution: Compile and run your program on the KIPR Wallaby.

Page :220

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Comments

Source Code

{

//
//
//
//
//

b WDNR

int main ()

. Wait for light.
. Drive forward.
. Wait for 3 seconds.
. Stop motors.

. End the program.

Execution: Compile and run your program on the KIPR Wallaby.

Page

1221

void drive forward() ;
int main ()

{
wait for light(23);

drive_ forward() ;
msleep ( ),

ao();

return ;

}

void drive_forward()

{

motor (0, ) ;
motor (2, ) ;

}

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Remember loops?

®* How doesthewait for light () function work?

®* We can use a loop, which controls the flow of the program by
repeating a block of code until a sensor reaches a particular value.
® The number of repetitions is unknown
® The number of repetitions depends on the conditions sensed by the robot

Professional Development Workshop # B h lr’
Page :222 © 1993 - 2018 KIPR Dt a



Botball tournament functions

These two functions should be
two of the first lines of code in
your Botball tournament program!

wait for light(0);

// Waits for the light on port #0 before going to the next line.

shut _down in( ) ;

//

Shuts down all motors after 119 seconds (just less than 2 minutes).
[ J

This function call should come immediately after the wait for 1light() in your code

If you do not have this function in your code, your robot may not automatically turn off
its motors at the end of the Botball round and you will be disqualified!

Professional Development Workshop
Page :223

© 1993 - 2018 KIPR # EDthalr



Tournament templates

int main() // for your Create robot
{
create_connect() ;
wait for light(0); // change the port number to match the port you use
shut down in( ); // shut off the motors and stop the robot after 119 seconds
// Your code
create_disconnect();
return 0O;

int main() // for not your Create robot
{
wait for light(0); // change the port number to match the port you use
shut down in( ); // shut off the motors and stop the robot after 119 seconds
// Your code
return 0O;

Professional Development Workshop # E h lr
Page :224 © 1993 - 2018 KIPR Dt a



Description: Write a program for the KIPR Wallaby that waits for a

light to come on, shuts down the program in 5 seconds, drives the
DemoBot forward until it detects a touch, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Wait for light. // 1. Wait for light.

2. Shut downin 5 seconds. // 2. Shut down in 5 seconds.
3. Drive forward. // 3. Drive forward.

4. Wait for touch. // 4. Wait for touch.

5. Stop motors. // 5. Stop motors.

6. Endthe program. // 6. End the program.

Professional Development Workshop
Page :225 © 1993 - 2018 KIPR



e
" Running a Botball tournament program
it

Analysis: Flowchart

[ Shut down in 5 seconds. ]

<

Drive forward. ]

¢

Wait for touch. ]

¢

[ Stop motors. ]

i

Professional Development Workshop # E h ll‘s’
Page :226 © 1993 - 2018 KIPR Dt a



Solution:

Pseudocode (Comments)

Source Code

{

//
//
//
//
//
//

int main ()

1. Wait for light.

2. Shut down in 5 seconds.
3. Drive forward.

4. Wait for touch.

5. Stop motors.

6. End the program.

Execution: Compile and run your program on the KIPR Wallaby.

Page

Professional Development Workshop
© 1993 — 2018 KIPR

1227

I int main ()

{
wait for light(0);

shut down in(5);

while (digital (0)
{
motor (0, ) ;
motor (-, )

}

ao();

4

return ;

}

)

#Botball




When you use the wait for 1light() function in your program,
the following calibration routine will run automatically.

CALIBRATE: sensor port #1 ‘ CALIBRATE: sensor port #1 § CALIBRATE: sensor port #1
press ON when light is on press OFF when light is off press OFF when light is off
light on value is = 66 light on value is = 66 light on value is = 68

light off value is = 1009 | light off value is = 1009

Good callhraflonl

i @

Diff = 94:MAITINL: FOR LIGHTS ON

Current reZ®ihg: 1009
| (; Lightison ] | ¥ ! ] . Light is OFF ] ¢
A [#h100% ‘_
! \
I \

______ | M.
I When the light is on (low value) I When the light is off (high value) I II You will get a “Good Calibration!” \I
|_press the “Light is On” button. 1 _pressthe “Light is Off” button. I message and moving red dot on |

: green bar when done correctly. |
; You will get a “BAD CALIBRATION” |
Note: For Botball, wait for light() should be | message when not done correctly, :
one of the first functions called in your program. I and you will need to run through |
l\ the routine again. I

Professional Development Workshop # B h lr’
Page :228 © 1993 - 2018 KIPR Dt a



Reflection:

®* What happens if the touch sensor is pressed in less than 5 seconds after
starting the program?

®* What happens if the touch sensor is not pressed in less than 5 seconds after
starting the program?

®* What is the best way to guarantee that your program will start with the light in
a Botball tournament round? (Answer: wait for light(0))

®* What is the best way to guarantee that your program will stop within 120
seconds in a Botball tournament round? (Answer: shut down in(119))

Use these functions in your Botball tournament code!

Professional Development Workshop # E h ll‘s’
Page :229 © 1993 - 2018 KIPR Dt a



Draw a square

Description: Write a program for the KIPR Wallaby that drives the
DemoBot along a path in the shape of a square.
® Start with having the robot make a 90° turn.

®* Then add in forward movements to have the robot drive along a square path.
Remember the direction your robot is taking.

Professional Development Workshop # B h lr’
Page :230 © 1993 - 2018 KIPR Dt a



Draw a square

Analysis: What is the program supposed to do? Flowchart
Pseudocode Comments G
1.Drive forward. // 1. prive forward. T"f:g;”’
2.Turn right 90°. // 2. Turn right 90-degrees. Drive forward.
3.Drive forward. // 3. prive forward. A%

Turn right 90°

4.Turn right 90°. // 4. Turn right 90-degrees. Drivxard.
5.Drive forward. // 5. prive forward. A4
6.Turn right 90°. // 6. Turn right 90-degrees. Turig;goo
7.Drive forward. // 7. prive forward. D"";“’;a""
8.Turn right 90°. // 8. Turn right 90-degrees. Turn right 90°
9.Stop motors. // 9. Stop motors. smxors.
N/

10.End the program. // 10. End the program.

Return 0

Professional Development Workshop # B h lr’
Page :231 © 1993 - 2018 KIPR Dt a



int main()

Draw a square C ) s etve somare

motor (0, )
motor (2, )
msleep ( ) ;
SOIUtlon: // 2. Turn right 90-degrees.
motor (0, )
motor (2, )
msleep ( ) ;
Here is some code that uses the motor () // 3. Drive forward.
and msleep () functions to drive the robot e o
in a square. meteep (10007
// 4. Turn right 90-degrees.
motor (0, )
motor (2, )
Note: this is just one of many solutions. maleep (1300} ;
// 5. Drive forward.
motor (0, ) ;
motor (2, ) ;
msleep ( )

// 6. Turn right 90-degrees.

motor (0, );
motor (2, );
- s - msleep ( ) ;

// 7. Drive forward.

motor (0, )
motor (2, )
msleep ( ),

// 8. Turn right 90-degrees.

<€ == == = motor (0, )
motor (2, )
msleep ( ),
ao(); // 9. Stop motors.
return 0; // 10. End the program.

} // end main



Fun with Functions

Writing your own functions
Function prototypes, definitions, and calls

Professional Development Workshop # E h lr
Page :233 © 1993 - 2018 KIPR Dt a



int main()

Draw a square A —

. motor (0, )
Drive forward. J motor(>, 100);
msleep ( )
RefIECtlon: // 2. Turn right 90-degrees.
. motor (0, )
Notice there are many repeated steps. Turn right. fmotorz, —70);
msleep ( )

For example:

// 3. Drive forward.

// Drive forward. . motor (0, 290);
_ Drive forward. J motor(2, 90);
motor (0, ) ; msleep ( )
motor (2, Y ISRttt sstsssssssssss
msleep( ) . // 4. Turn right 90-degrees.
’ motor (0, )
. . . . Turn right. J motor (2, )
... is repeated 4 times in this program! 8 msleep (1500) ;
® Also, Turn right 90-degrees. [/ 5. Drive fomazd.
Drive forward. || motor(2, 90);
msleep ( )
You will quickly learn to use copy-and- // 6. Turn right 90-degrees.
. . . motor (0, )
paste over and over again, but there is a Turn right. J motor(>, —70);
msleep ( )

better and easierway... R

// 7. Drive forward.

Drive forward. | nocee (o o0)
Learning to write your own functions et .
allows you to reuse code easily! _ L o oun Tidht S0mdegrees.
Turn right. § notorz. 70y
msleep ( )
ao(); // 9. Stop motors.

return 0; // 10. End the program.
} // end main



Writing your own functions

®* Remember: a function is like a recipe.

®* When you call (use) the function, the computer (or robot) does all
of the actions listed in the “recipe” in the order they are listed.

® Functions are very helpful if you take some actions multiple times:
® driving straight forward - drive forward() ; A We made these up...
® making a 90° left turn - turn left 90() ;

|
|
. and that’s the point!
|
® making a 180° turn - turn_around() ; > | ,
i You can write your
|
I

own functions to do
whatever you want!

® |iftinganarmup > 1ift arm();

® closing aclaw - close claw() ;
® Functions often make it easier to (1) read the maln function, an
(2) change distance, turning, timing, or other values if necessary.

o

Professional Development Workshop # B h lr’
Page :235 © 1993 - 2018 KIPR Dt a.



Writing your own functions

®* There are three components to a function:

Page

1.

:236

Function prototype: a promise to the computer that the function is
defined somewhere (an entry in the table of contents of a recipe book)

Function definition: the list of actions to be executed (the recipe)
Function call: using the function (recipe) in your program

—————————————————

void drive forward();! // function prototype
i’ delalalaialinialinialinie : void is a data
int main|() type, we will
talk about data
)'dr:.ve forward () ; // function call types later
return 07 """ 7

—————————————————————————

I void drive forward() // function definition
X I
I motor (0, ) ; !
—»  motor(”, ) ; :
: msleep ( ) ; :
1 ao(); I
I I

Professional Development Workshop # E h ll“’
© 1993 - 2018 KIPR Dt a



Writing your own functions

Function prototypes
go above main.

Function calls
go inside main
(or inside other

functions).

Function definitions
go below main.

Page :237

void drive_forward();

e

// function prototype

int main()

{
drive forward() ;
return 0O;

} // end main

void drive_ forward()

{
motor (O,
motor (-2,
msleep (
ao();

} // end drive forward

) ;
) ;
).

4

// function call

Use void in your
function prototype if
you are
commanding the
robot to do
something.

// function definition

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Writing your own functions

The function prototype and the function definition look the same except for one thing...
prototype

> void drive forward(); // function prototype

int main ()
{

drive forward(); // function call
return 0O;

} // end main

definition > void drive forward() // function definition
{
motor (0, ) ; . . :
motor (2, 90); Notice: no semicolon!
msleep ( ) ; (Why not?)
ao();

} // end drive forward

Professional Development Workshop # E h lr
Page :238 © 1993 - 2018 KIPR Dt a



Writing your own functions

void drive forward(); // function prototype

The function prototype is a

int main() promise to the computer...
{

drive forward(); // function call @

return 0; .
} // end main ... that you will tell the

computer what to do in the
function definition.

void drive forward() // function definition
{

motor (0, ) ;

motor (2, ) ;

msleep ( ),

ao();
} // end drive forward

Neither the function prototype nor the function definition tell the
computer when to use the function. That is the job of the function call...

Professional Development Workshop # E h lr
Page :239 © 1993 - 2018 KIPR Dt a



Writing your own functions

void drive forward(); // function prototype

The function call makes the
_ _ computer jump down to the
?nt main () function definition.

drive forward(); // function call
return 0O;

} // end main

void drive forward() // function definition

{ Y AV 4
m°:°r§ ' ; ; The program then executes
motor (-2, ; . .
msleep (4000) ; > €— all of the lines of code in the
ao(); block of code.

} // end drive forward J

Professional Development Workshop # E h lr
Page :240 © 1993 - 2018 KIPR Dt a



Writing your own functions

void drive forward(); // function prototype

int main ()
{

drive forward(); // function call

return 0O;
} // end mair& After the computer executes all of the lines of code in

the function definition, the program jumps back up to
the line of code after the function call and continues.

void drive forward() // function definition
{

motor (O, ),

motor (-2, ),

msleep ( ),

; This is the end } of the

2ol); / function definition.
} // end drive forward

Professional Development Workshop # E h lr
Page :241 © 1993 - 2018 KIPR Dt a



Writing your own functions

// function prototypes
void drive forward() ;
void turn right();

int main ()

{

drive forward() ; // drive forward function call
turn right(); // turn right function call
return 0O;

} // end main

void drive forward() // drive forward function definition

{

’

motor (0, ),

motor (2, ),
msleep ( )
ao();

} // end drive forward

’

void turn right() // turn _right function definition
{

motor (O, )

motor (-2, )

msleep ( ),

ao();

Page :242 } // end turn_right tEDtha“@




Description: Write a program for the KIPR Wallaby that drives the

DemoBot along a path in the shape of a square using functions.
® Hint: modify your old square-drawing program to use your own functions.
® Break the task down into common subtasks - these become your functions!

Professional Development Workshop # B h lr’
Page :243 © 1993 - 2018 KIPR Dt a



o o D E—m

| Code without your functions

P e
!

Code with your functions |

int main()
{ ™

// 1. Drive forward.

motor (0, )
motor (2, ); // Function prototype for
msleep ( ); // drive forward and turn_right.

void drive_forward_and turn_right();
// 2. Turn right 90-degrees.
motor (0, ),

motor (2, );

msleep ( ); // Function definition for main.
int main()

r {

// 3. Drive forward.

motor (0, ); // Four function calls for
motor (2, ) ; // drive_forward and turn_right.
msleep ( ), drive_forward and_turn_right();

> main i.S shorter and < drive forward and_turn_right();
easier to read. drive_forward_and_turn right();

// 4. Turn right 90-degrees.

motor (0, ), drive_forward and_turn_right();
motor(~, ), return 0O;
msleep ( ); \. } // end main

// 5. Drive forward.

motor (0, ),
motor (2, ) ; // Function definition for
msleep ( ) ; // drive_ forward and turn right.

void drive forward and turn_right()

// 6. Turn right 90-degrees. {

motor (0, ) // Drive forward.

motor (~, ), motor (0, ),

msleep ( ), motor (2, ),
msleep ( )

// 7. Drive forward.

motor (0, ) ; // Turn right 90-degrees.
motor (~, ), motor (0, ),
msleep ( ) motor (”, )

msleep ( )

// 8. Turn right 90-degrees.

motor (0, ) // Stop motors.

motor (2, ) ; ao();

msleep ( ) } // end drive forward and turn right
ao(); // 9. Stop motors.

return 0; // 10. End the program.

} // end main



Draw a square

REerction : // Function prototype for

// drive_forward _and_turn_right.
void drive_ forward and turn_right();

1. It makes the main function easier to

// Function definition for main.

read and understand, and spotting int main()
mistakes is much easier. 11 Giwe, Foonand and vun sight.
drive_forward and_turn_right();
2. You only have to change a value one drive_formrd_snd_turn right();
time in the function definition for it drive_forward and tusn_right();
to affect the entire program. b /7 end main
// Function definition for
®* For example, to draw a smaller square, //.cFiriv;_forward_aEd_turn_rigltlt.
Slmp|y Change the msleep () Value in \{IOld drive_forward and turn_right()
your drive_ forward and turn() ! tiii("e f°;f‘f’ard-
function definition from to : motl:or((, ;;
msleep ;

// Turn right 90-degrees.
motor (0, ),

motor (2, ),

msleep ( )

// Stop motors.

ao();
} // end drive forward and turn_right

Professional Development Workshop # E h ll‘s’
Page :245 © 1993 - 2018 KIPR Dt a



Page

: 246

Create a function to wave your servo arm.

Comments

void

//
//
//
//
//
//

wave ()

Enable servos.

. Move servo to YOUR limit.

. Wait for 3 seconds.

. Move servo to YOUR other limit.
. Wait for 3 seconds.

. Disable servos.

o UndWNRE

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Solution:
Comments
void wave ()
{
// 1. Enable servos.
// 2. Move servo to YOUR limit.
// 3. Wait for 3 seconds.
// 4. Move servo to YOUR other limit.
// 5. Wait for 3 seconds.
// 6. Disable servos.

void wave () ;

Source Code

int main()

{

wave(); // function call
return 0O;
} // end main

void wave ()

{

// 1. Enable servos.
enable_servos() ;

// 2. Move servo to YOUR limit.

set_servo_position (0, ) ;

// 3. Wait for 3 seconds.
msleep ( ) ;

// 4. Move servo to YOUR other

imit.

set_servo_position (0, ) ;
// 5. Wait for 3 seconds. VR\
msleep ( ),

Use YOUR
servo limits!

// 6. Disable servos.
disable_ servos();

}

Execution: Compile and run your program on the KIPR Wallaby.

Page

1247

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Pseudocode (Comments)

{

//
//
//
//
//
//
//

int main()

1. Loop: Is not pressed?
1.1. If: Is dark detected?
1.1.1. Turn/arc right.
1.2. Else:

1.2.1.
2. Stop motors.
3. End the program.

Turn/arc left.

Page

: 248

void turn_left();
void turn right();

int main ()
{ while (digital(0) == 0)
{ if (analog(0) > )
{ turn_right() ;
}

else

{
turn_left();

}
}

ao();

return 0O;

}

void turn_left()
{

motor (0, )

motor (2, ); // Turn/arc left.
}

void turn_right()
{
motor (0, )
motor (2, ); // Turn/arc right.

}




More Variables and Functions with
Arguments

Data types
Creating and setting a variable
Variable arithmetic
Functions with arguments and return values

Professional Development Workshop # E h lr
Page :249 © 1993 - 2018 KIPR Dt a



Variables (quick recap)

You can set the value of an int variable to any integer you choose
and change it when you need in the code.

Note that a single equal sign (=) means is assigned (sometimes it is
called the “assignment operator”).

\
counter| 3 “visualize”
. . the variable
:.Lnt c<.>unter, storage
int ticks; ticks 27 ) spaces
SO counter = 3; means “counter is assigned 3”.
And ticks = *( / circumferenceMM); means

“ticks is assigned 2000 times 1400.0 divided by circumference (in
mm)” (used to calculate how many ticks needed to travel ~2meters).

Professional Development Workshop # B h lr’
Page :250 © 1993 - 2018 KIPR Dt a.



Remember This?

When you
call this
function, |

how long

will it run
for?

void drive_ forward(); // function prototype

int main ()

{
9drive_forward 0 ;
return

// function call

}

void drive_ forward() // function definition

{
motor (0,
motor (~,
msleep (
ao();

);
);
);

What if you don’t want it to run for this long each time?

Page :253

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Page

® Function arguments: values you will set when you call the
function

int main ()

{

e e o o

return 0O;
} // end main

e

motor (0, )
motor (2, )
msleep (milliseconds) ;
ao();
}

// function prototype

// function call

// function definition

1254

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Writing your own functions

with arguments

void drive forward(int milliseconds); // function prototype

int main ()

{

drive forward( ); // function call
return 0O;
} // end main The value in the function call

sets the value of the argument...

void drive forward(int milliseconds) // function definition

t tor( ) ... Which is then used in the
motor ’ ; . A
motor (2, 20); function definition.

msleep (milliseconds) ;
ao() ;

} // end drive forward

Professional Development Workshop # E h lr
Page :255 © 1993 - 2018 KIPR Dt a



Writing your own functions

Page

with arguments

The function prototype and the function definition look the same except for one thing...

: 256

>

void drive_ forward(int milliseconds) ;

int main ()
{

drive forward ( ); // function call
return 0O;

} // end main

void drive_ forward(int milliseconds)
{

motor (O, ),

motor (-2, ),

msleep (milliseconds) ;

ao();
} // end drive forward

// function prototype

// function definition

Notice: no semicolon!

(Why not?)

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Writing your own functions

with multiple arguments

void drive forward(int power, int milliseconds); // function prototype

int main ()

{

drive forward (20, ):; // function call
return 0O;

} The value in the function call
sets the value of the argument...

void drive_ forward(int power, int milliseconds) // function definition

{ % ... Which is then used in the
motor (0, power);

motor (2, power) ; function definition.
msleep (milliseconds) ;
ao();

Professional Development Workshop # E h lr
Page :257 © 1993 - 2018 KIPR Dt a



Page

Arguments can change over time

void drive forward(int power, int milliseconds); // function prototype
void turn right(int degrees); // function prototype

int main ()

{

drive forward (20, ),
turn _right (90); // not defined yet but trust that it works
drive forward(/5, ),
return 0O;
} The values in the SECOND function call

are now 75 and 2000 respectively

void drive forward(int power, int milliseconds) // function definition
{ % ... which is then used in the
motor (U, power); function definition.
motor (2, power);

msleep (milliseconds) ;
ao() ;

Professional Development Workshop # E h lr
:258 © 1993 — 2018 KIPR Dt a



Repetition, Repetition, Repetition

Program flow control with loops
while loops for counting
while and Boolean operators

Professional Development Workshop # E h lr
Page :259 © 1993 - 2018 KIPR Dt a



Suppose your task is to wave the robot arm 10 times...

Page

Pseudocode

W o N O Uk WN

=
= O

:260

Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
Wave Arm.
End the program.

Comments

// 1.
// 2.
// 3.
// 4.
// 5.
// 6.
// 7.
// 8.
// 9.
// 10.
// 11.

Wave

Wave

Wave

Wave

Wave

Wave

Wave

Wave

Wave

Wave

End the program.

Arm.
Arm.
Arm.
Arm.
Arm.
Arm.
Arm.
Arm.
Arm.

Arm.

Professional Development Workshop

© 1993 - 2018 KIPR

\/

Wave Arm.

A4

Wave Arm.

\Z

Wave Arm.

\/

Wave Arm.

\/

Wave Arm.

\/

Wave Arm.

7

Wave Arm.

A4

Wave Arm.

A4

Wave Arm.

A4

Wave Arm.

#o

\/

Return 0.

<>

ball



Program flow control with loops

Now, suppose your objective is to wave the arm 50 times...
... or 100 times...
... or 1,000 times...
... or 12,345 times...
You could copy-and-paste lines of code, but it would take a very long time...
There has got to be a better way!

(And there is!)

Professional Development Workshop # E h ll‘s’
Page :261 © 1993 - 2018 KIPR Dt a



‘\‘*\\%l".’ W Program flow control with loops
1

®* What if we want to repeat the same block of code many times?

®* We can do this using a loop, which controls the flow of the
program by repeating a block of code.

Professional Development Workshop # B h lr’
Page :262 © 1993 - 2018 KIPR Dt a



[
<
()
¢"

[
::: <
()
=

s
>
3

()
<
o
¢-‘

s
>
3

[
<
()
'¢-l

s
>
3

()
<
o
c“

s
>
3

()
<:: <
o
=

s
>
3

()
<
o
c“

s
>
3

()
<
o
<"

s
>
3

Q
<
o
<"

s
>
3

x
-
o

[-1)
o <
= m
<
S -

Set “counter” to 0.

Is
“counter”

— VS —

_
[ Add 1 to “counter”.
\\ > ReturnO. ]

s
Coe #Botball

Professional Development Workshop
© 1993 — 2018 KIPR



\‘t\ W Program flow control with loops
(Y

This part of the code

e is the loop. 9.

Set “counter” to 0. ]

SHS

s
>
3

()
<
o
¢-‘

s
>
3

[
<
()
'¢-l

s
>
3

— VS —

()
<
o
c“

s
>
3

()
<:: <
o
=

s
>
3

()
<
o
c“

s
>
3

i) o
< <
) o
=] =1

s
>
3

S

SHS

Return 0.

s
Coe #Botball

x
]
-
c
o

Professional Development Workshop
Page :264 © 1993 - 2018 KIPR



while loops

The while loop checks to see if a Boolean test is true or false...
* If the testis true, then the while loop continues to execute the block of code that immediately

follows it.
* If the testis false, then the while loop finishes, and the line of code after the block of code is

executed.

int main ()

{

while (Boolean test)

{
// Code to repeat ...

}

return ;

Professional Development Workshop # E h lr
Page :265 © 1993 - 2018 KIPR Dt a



while loops

The while loop checks to see if a Boolean test is true or false...
* If the testis true, then the while loop continues to execute the block of code that immediately

follows it.
* If the testis false, then the while loop finishes, and the line of code after the block of code is

executed.

int main ()

{
while (Boolean test) €= Block Header

Begin  mmiy ¢ (no semicolon!)
// Code to repeat ...

End  =—p

return ;

Professional Development Workshop # E h lr
Page :266 © 1993 - 2018 KIPR Dt a



while and Boolean operators

The Boolean test in a while loop is asking a question:

Is this statement true or false?

®* The Boolean test (question) often compares two values to one
another using a Boolean operator, such as:

* == Equal to (NOTE: two equal signs, not one which is an assignment!)
° 1= Not equal to

* <L Less than

° > Greater than

* <= Less than or equal to

* >= Greater than or equal to

Professional Development Workshop # B h lr’
Page :267 © 1993 - 2018 KIPR Dt a



Page

Boolean English Question True Example False Example
A == Is A equal to B? 5 == 5 ==
A '=B Is A not equal to B? 5 =4 5 =5
A< B Is A less than B? 4 < 5 5 < 4
A > B Is A greater than B? 5 > 14 4 > 5
4 <= 5
A <= B Is A less than or equal to B? 6 <= 5
5 <= 5
5 >= 4
A > B Is A greater than or equal to B? Eos= © 5 >= 6

:268

Professional Development Workshop

© 1993 - 2018 KIPR

#Botball




Variables as Counters

®* Rember that variables can be modified over time, so how could

this be useful?

®* They can be used to help remember (or keep count) for us how many
times something has been done (which can be useful for some loops).

int counter;
counter = 0;
// some code later
counter = Sounter + J; // adding one to the counter

Y
The “trick” to understanding this is that the RIGHT side is done first
which means counter “is assigned” counter (currently 0) plus one

(or0+ 1)

counter 0

counter 1

Professional Development Workshop # B h lr’
Page :269 © 1993 - 2018 KIPR Dt a



Description: Write a program for the KIPR Wallaby that drives the DemoBot

along a path in the shape of a square using loops.
® Hint: modify your old square-drawing program to use a while loop.
®* Bonus: use a while loop and functions!

Analysis: What is the program supposed to do?

Pseudocode
Comments

1.Set Variable “side_counter” to 0. // 1. Set Variable “side counter” to 0.
2.Loop: Is “side_counter” < 4? // 2. Loop: Is “side counter” < 4?

1. Drive forward. //  2.1. Drive forward.

2. Turn right 90°. // 2.2. Turn right 90-degrees.

3. Add 1 to “side_counter”. //  2.3. Add 1 to “side counter”.
3.Stop motors. // 3. Stop motors.
4.End the program. // 4. End the program.

Professional Development Workshop # E h ll‘s’
Page :270 © 1993 - 2018 KIPR Dt a



Analysis: Flowchart

\/

Set “side_counter” to 0.

Boolean Test

NO ‘ YES

Drive forward.

v

Turn right 90°.

N/

Add 1 to “side_counter”.

\ * Stop motors.

Return 0

Boolean Test
“side_counter” is < 4?

{

Professional Development Workshop # E h llﬁ’
Page :271 © 1993 - 2018 KIPR Dt a



Solution:

Source Code

Comments int side_counter =

i nt in () while (side_counter <

int main {

{ motor (0, ) ;
// 1. Set “side counter” to 4. m°‘l"°r( p 20);
// 2. Loop: Is “side counter” < 47 msleep( Vi
// 2.1. Drive forward. motor (0, ) ;
// 2.2. Turn right 90-degrees. motor (2, -70);
// 2.3. Add 1 to “side counter”. msleep ( )i
// 3. Stop motors.

// 4. End the program. }
}
ao();
\ return 0;
\\ }
\
\
\
\
\
Professional Development Workshop
Page :272 © 1993 - 2018 KIPR

int main ()

{

side_counter = side counter + 1;

’

)

// forward

//right turn

#Botball



Solution: Use a function!

Q
;O /
o/
/
g
~3/
S
Comments /
int main ()
{
// 1. Set “side counter” to 4.
// 2. Loop: Is “side counter” < 47
// 2.1. Drive forward.
// 2.2. Turn right 90-degrees.
// 2.3. Add 1 to “side counter”.
// 3. Stop motors.
// 4. End the program.
}
\
\
\
\
\
\
\
\
\
\
Page :273

void drive forward and turn right();

int main()

{

int side_counter = ;

while (side_counter < 1)

{

drive forward and turn_right();

side counter =

}

side counter + 1;

ao();
return O;

}

void drive forward and turn right()
{

motor (0, )

motor (2, ),

msleep ( ) ;

motor (0, ) ;

motor (2, -70);

msleep ( ) ;

ao();




Description: Write a program for the KIPR Wallaby that moves the DemoBot

servo arm from position 200 to 1800 in increments of 100.
®* Remember to enable the servos at the beginning of your program, and disable the

servos at the end of your program!

Analysis: What is the program supposed to do?

Pseudocode

1. Set counter to 200. //

2. Set servo position to counter. //

3. Enable servos.

4. Loop: Is counter < 18007? //
1. Wait for 100 milliseconds. //
2. Add 100 to counter. //
3. Set servo position to counter. //

5. Disable servos. //

6. End the program. //

Page :274 © 1993 - 2018 KIPR

Comments

. Set counter to 200

. Set servo position to counter

// 3. Enable servos.

. Loop: Is counter < 18007

4.1. Wait for 100 milliseconds.
4.2. Add 100 to servo position.

4.3 Set servo position to counter.

. Disable servos.

. End the program.

Professional Development Workshop # EDthalr



Analysis: Flowchart

\/

Set counter to 200.

N7

Set servo position to counter.

N\

Enable servos.

Is counter <
1800
NO N/ YES

Wait for 100 milliseconds.

N/
Add 100 to counter.
/

Set servo position to counter.

\;>[ Disable servos.
N/

Return 0

& #Botball

Page :275



Solution:

Comments

Source Code

int main()

{

// 1. Set counter to 200.
// 2. Set servo position to counter.
// 3. Enable servos.
// 4. Loop: Is counter < 18007
// 4.1. Wait for 0.1 seconds.
// 4.2. Add 100 to counter.
// 4.3. Set servo position to counter.
// 5. Disable servos.
// 6. End the program.
}
Page :276

int main()

{ int counter = ;
set_servo_position((U, counter);
enable servos();
while (counter < )

{

msleep ( )
counter = counter + ;

set servo position (0, counter);
}
msleep ( ) ;

disable servos();

return 0O;




Moving the iRobot Create: Part 1

Setting up the Create
The Create and the KIPR Wallaby
Create functions

Professional Development Workshop # E h lr
Page :277 © 1993 - 2018 KIPR Dt a



Charging the Create

® For charging the Create, use only the power supply
which came with your Create.

® Damage to the Create from using the wrong charger is easily
detected and will void your warranty!

®* The Create power pack is a nickel metal hydride
battery, so the rules for charging a battery for any
electronic device apply.
® Only an adult should charge the unit.
® Do NOT leave the unit unattended while charging.
® Charge in a cool, open area away from flammable materials.

Professional Development Workshop # B h lr’
Page :278 © 1993 - 2018 KIPR Dt a



*The yellow battery tab pulls out of place on the bottom of the Create.
*The battery will be enabled as soon as the tab is removed.

Create
Underside

Professional Development Workshop # B h lr
Page :279 © 1993 - 2018 KIPR Dt a



®* Remove the green protective tray from the top of the Create.
® Use only the Create charger provided with your kit.
®* The Create docks onto the charging station.

Remove this Serial
Port

Professional Development Workshop # E h lr
Page :280 © 1993 - 2018 KIPR Dt a



w Mounting the Robotics Controller onto
=1 the Create

Build the Create DemoBot

Professional Development Workshop # E h lr
Page :281 © 1993 - 2018 KIPR Dt a



=
‘\‘i\\'g.., " Create connect/disconnect functions
i

All programs used with the Create Flowchart

MUST start with
create connect() —_— \/

and endwith [ Connect to Create ]

create disconnect () \/
- [ Drive forward 2 seconds. ]

\/

[ Turn off motors ]

\/

[ Disconnect from Create ]

Professional Development Workshop # B h lr’
Page :282 © 1993 - 2018 KIPR Dt a



Create motor functions

Note: Create commands run until a different motor command is received.

create _drive direct( T , T ) ;

Left Motor Speed Right Motor Speed

(in mm/second) (in mm/second)
Examples:
create drive direct( , ) ; // Moves forward at 100 mm/sec.
create drive direct( , ); // Create will turn left.
create drive direct( , ); // Create will turn right.
create stop(); // Turns off the Create motors.

WARNING: the maximum speed for the Create motors is 500 mm/second = 0.5 m/second.
It can jump off a table in less than one second!
Use something like 200 for the speed (moderate speed) until teams get the hang of this.

Professional Development Workshop # B h lr’
Page :283 © 1993 - 2018 KIPR Dt a



Using Create functions

int main ()

{

create connect() ;

create_drive direct( , ) ;

msleep ( ),

create_stop () ; \\ How far will the
create_disconnect() ; .
return 0; Create drive?

Professional Development Workshop # E h lr
Page :284 © 1993 - 2018 KIPR Dt a



Moving the Create

Description: Write a program for the KIPR Wallaby that drives the
Create forward at 100 mm/second for four seconds, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Connectto Create. // 1. Connect to Create.

2. Drive forward at 100 mm/sec. // 2. Drive forward at 100 mm/sec.
3. Wait for 4 seconds. // 3. Wait for 4 seconds.

4. Stop motors. // 4. Stop motors.

5. Disconnect from Create. // 5. Disconnect from Create.

6. Endthe program. // 6. End the program.

Professional Development Workshop # E h llﬁ’
Page :285 © 1993 - 2018 KIPR Dt a



Moving the Create

Analysis: Flowchart

\/

[ Connect to Create. ]

\/

Drive forward at 100 mm/sec. ]

\/

[ Wait for 4 seconds. ]

\/

[ Stop motors. ]

\/

[ Disconnect from Create. ]

\/

Professional Development Workshop # E h llﬁ’
Page :286 © 1993 - 2018 KIPR Dt a



Solution:

Source Code

Comments I

int main ()

int main ()

{

create connect() ;

{
//
//
//
//
//

1. Connect to Create.
2. Drive forward at 100 mm/sec.
3.
4
5

Wait for 4 seconds.

. Stop motors.
. Disconnect from Create.

create_drive direct(
msleep ( )
create stop();
create_disconnect() ;

return ;

14

)

Execution: Compile and run your program on the KIPR Wallaby.

Page :287

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball




Description: Write a program for the KIPR Wallaby that drives the

Create forward until it touches an object (or gets as close as it can),
and then returns to its starting location (home).
®* Move the object to various distances.

Starting line

Starting line )
= Object Starting line

iRobot
Create -i
(_ ||
Create

iRobot
Create

Professional Development Workshop # B h lr’
Page :288 © 1993 - 2018 KIPR Dt a.



Moving the iRobot Create: Part 2

Create distance and angle functions

Professional Development Workshop # E h lr
Page :289 © 1993 - 2018 KIPR Dt a



The Create has a built-in sensor that measures

the distance traveled (in millimeters) and \

the angle turned (in degrees).

get create distance()

-
|
|
|
|
|

This is similar to the
motor position counter...
but better!

// Tells us the distance the Create has traveled in mm.

set create_distance(0);

// Resets the Create distance traveled to 0 mm.

get create_ total angle()

// Tells us the total angle the Create has turned in degrees.
// Positive angles are to the left. Negative angles are to the right.

set create_ total angle(0);

// Resets the Create angle turned to 0 degrees.

Page

:290

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Using Create distance functions

What does this say?
/

int main()
{
create_connect() ;
set create_distance (0);
while (get create distance() < )

{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

Professional Development Workshop # E h lr
Page :291 © 1993 - 2018 KIPR Dt a



Page

: 292

Using Create angle functions

/

What does this say?

int main()
{
create_connect() ;
set create_ total angle(0);
while (get create total angle() <
{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

)

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Using Create angle functions

Positive angles
are to the /eft
(counter-clockwise).

{

int main ()

create_connect() ;

set create_ total angle(0);
while (get create total angle() < )
{

create _drive direct( , ) ;
}
create_stop() ;
create_disconnect() ;
return 0O;

e

e

Page :293

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Using Create angle functions

Negative angles
are to the right
(clockwise).

{

int main ()

create_connect() ;

set create_ total angle(0);

while (get_create total angle() >
{

create_drive direct( , ) ;

create_stop() ;
create_disconnect() ;
return ;

e

hd

)

\
} (\k Notice:

the signs changed!

Page :294

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



iRobot Create Sensors

Create sensor functions
Logical operators

Professional Development Workshop # E h lr
Page :295 © 1993 - 2018 KIPR Dt a



Create sensor functions

To get Create sensor values, type get create sensor(),
replacing sensor with the name of the sensor

I rclightbump cw drop I lclightbump I
: 1flightb
Irfllghtbump Irfcllff fcliff 9 umpl
rbump lbump I

| r1ightbump :jf 1lightbump|
| rc1ifs | N 1c11ff|
I rwdrop |’| ‘ H lwdrop I
I distance I J'“"“\\\ I total angle I

Professional Development Workshop # E h lr
Page :296 © 1993 - 2018 KIPR Dt a



Create sensor functions

get create lbump ()

get create_ rbump ()

// Tells us if the Create left/right bumper is pressed.
// Like a digital touch sensor.

get create lwdrop ()

get create_ rwdrop()

get create cwdrop ()

// Tells us if the Create left/right/center wheel is dropped.
// Like a digital touch sensor.

get create lcliff()

get create 1lfcliff()

get create rcliff()

get create rfcliff()

// Tells us the Create left/left-front/right/right-front cliff sensor value.
// Like an analog reflectance sensor.

get create battery capacity()
// Tells us the Create battery level (0-100).

Professional Development Workshop # E h lr
Page :297 © 1993 - 2018 KIPR Dt a



Using Create sensor functions

/

What does this say?

{

int main ()

create_connect() ; /

while (get_create_rbump() ==

{

create_drive direct( ,
}
create_stop() ;
create_disconnect() ;
return O;

)

)

Page :298

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Drive until bumped

Description: Write a program for the KIPR Wallaby that drives the
Create forward until a bumper is pressed, and then stops.

Analysis: What is the program supposed to do?

Pseudocode Comments
1. Connectto Create. // 1. Connect to Create.
2. Loop:Is not bumped? // 2. Loop: Is not bumped?
1. Drive forward. // 2.1. Drive forward.
3. Stop motors. // 3. Stop motors.
Disconnect from Create. // 4. Disconnect from Create.
5. Endthe program. // 5. End the program.

Professional Development Workshop # E h ll‘s’
Page :299 © 1993 - 2018 KIPR Dt a



Drive forward.

\L H Stop motors.

v

Disconnect from Create.

\/

Return 0

e

Professional Development Workshop # E h lr
Page :300 © 1993 - 2018 KIPR Dt a




Solution:

Comments

Source Code

7| int main ()

AR

int main()

{
// 1. Connect to Create.
// 2. Loop: Is not bumped?
// 2.1. Drive forward.

// 3. Stop motors.
// 4. Disconnect from Create.
// 5. End the program.

Professional Development Workshop

Page :301

create connect() ;

while (get_create_rbump() ==

{

create_drive direct( ,

}
create stop();
create_disconnect();

return ;

)

)

© 1993 - 2018 KIPR

#Botball




By Activity 4 (connections to the game)
A

Make the iRobot Create move forward in a straight line
until it comes into contact with another object. Then have

it make a 902 turn and again travel in a straight line for
exactly 0.9 meters.

Professional Development Workshop # B h lr’
Page :302 © 1993 - 2018 KIPR Dt a



LUNCH

Please take our survey to give feedback about the workshop:
https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop # E h lr
Page :303 © 1993 - 2018 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

Color Camera

Using the color camera
Setting the color tracking channels
About color tracking
Camera functions

Professional Development Workshop # E h lr
Page :304 © 1993 - 2018 KIPR Dt a



Color camera

For this activity, you will need the camera.
®* The camera plugs into one of the USB (type A) ports on the back of the Wallaby.

®* Warning: Unplugging the camera while it is being accessed can freeze the
Wallaby, requiring it to be rebooted.

USB Ports

Professional Development Workshop # E h lr
Page :305 © 1993 - 2018 KIPR Dt a



1. Select Settings
2. Select Channels

About Shut Down

Camera View ¢ J | ==l Network J
(m 2 ) " L Channels J [ @ Language J
. rograms ; & ;
[ W Motors and Sensors i J > [: E Gu J C@ Update s M,J
E& Settings ] C_-s] Calibrate .J ? Battery ¥‘;]

[: i” T ,Hldequ‘lwu— i J_.J.:]

LiFe [[h100%
LiFe [Th100% X

Professional Development Workshop

:306

Page

#Botball

© 1993 - 2018 KIPR



3. To specify a camera configuration, press the Add button.

4. Enter a configuration name, such as find_green, then press the
Ent button.

5. Highlight the new configuration and press the Edit button.

H}

® %stc Crifate New Configuration

ANOERNNOED
EsHoaannme

Ed

|

Professional Development Workshop # B h lr’
Page :307 © 1993 - 2018 KIPR Dt a.



6. Press the Add button to add a channel to the configuration.
7. Select HSV Blob Tracking, then OK to make this track color.

8. Highlight the channel, then press Configure to edit settings.
e The first channel is O by default. You can have up to four: 0, 1, 2, and 3.

F
Create a New Channel: l a2 I
Channel ype: (HSV Blob Tratking  + |

|| @ Configure
b bnii

[ & oK ] [:—x cancel J

Professional Development Workshop # B h lr’
Page :308 © 1993 - 2018 KIPR Dt a.



9. Place the colored object you want to track in front of the camera
and touch the object on the screen.
* A bounding box (dark blue) will appear around the selected object.

10. Press the Done button.

F /

<o St <o
3 Visual
< N <

[ _sManual ]

H 10

Professional Development Workshop # E h lr
Page :309 © 1993 - 2018 KIPR Dt a



Verify the color channel is working

1. From the Home screen, press Motors and Sensors button.
2. Press the Camera button.
3. Objects specified by the configuration should have a bounding box.

| Programs J

|" & Motors and Sensors J

& settngs__ AN

2

Professional Development Workshop # E h lr
Page :310 © 1993 - 2018 KIPR Dt a



Tracking the location of an object

®* You can use the position of the object in relation to the
center x (column) of the image to tell if it is to the left or right.

® The image is 160 columns wide, so the center column (x-value) is 80.
® An x-value of 80 is straight ahead.
® An x-value between 0 and 79 is to the left.
® An x-value between 81 and 159 is to the right.
® You can also use the position of the object in relation to the center y (row) of
the image to tell how far away it is. Object

(0, 0) (80, 0) (159, 0) 0,1,2,..

(largest to smallest)

Channel #\ ¢
) ;

get object center x(0,

Left Right // The x-value of the tracked object.
// Note: number between 0 and 159.
(0, 119) (80, 119) (159, 119)

Professional Development Workshop # B h lr’
Page :311 © 1993 - 2018 KIPR Dt a



Camera functions

camera open black() ;
// Opens the connection to the black camera.

camera close() ;
// Closes the connection to the camera.

camera update() ;

// Gets a new picture (image) from the camera and performs color tracking.

get object count( )
// The number of objects being tracked on the specified color channel.

get object center x( ] )

// The center x (column) coordinate value of the object # on the color channel.

get object center y( , )
// The center y (row) coordinate value of the object # on the color channel.

Professional Development Workshop # E h lr
Page :312 © 1993 - 2018 KIPR Dt a



Page

:313

Using camera functions

int main ()
{
camera_open_black() ;
while (digital( == 0)
{
camera_update() ;
if (get_object count( == 0)
{
printf ("No objects detected.\n");
}

else
{
if (get_object center x (0, 0) < )
{
printf ("Object is on the left!\n");
}
else

{
printf ("Object is on the right!\n");
}
}
}

camera close();
return 0O;

What do these say?

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



By Activity 5 (connections to the game)
W

|
Calibrate and program the robot and camera combination

so that it will turn on its axis in response to Botguy moving
to the left or right in front of it.

Professional Development Workshop # B h lr’
Page :314 © 1993 - 2018 KIPR Dt a



Logical Operators

Multiple Boolean tests
while, 1£f, and Logical operators

Professional Development Workshop # E h lr
Page :315 © 1993 - 2018 KIPR Dt a



Logical operators

Recall the Boolean test for while loops and if-else conditionals...

while (Boolean test) if (Boolean test)

®* The Boolean test (conditional) can contain multiple Boolean tests
combined using a “Logical operator”, such as:

* && Anrd
° | Or . We put parentheses ( and )
| around each Boolean test...

o1 Not/----l _____ [ \

while ((Boolean test 1) && (Boolean test 2))

if ((Boolean test 1) || (!Boolean test 2))

®* The next slide provides a cheat sheet for Logical operators.

Professional Development Workshop # B h lr’
Page :316 © 1993 - 2018 KIPR Dt a



Logical operators cheat sheet

Boolean English Question True Example False Example

true && false

A && B Are both A and B true? true && true false && true
false && false

true || true
A || B Is at least one of A or B true? false || true false || false
true || false

true && false

(A && B) Is at least one of A or B false? false && true true && true
N false && false

\\ true || true

"(A || B) Are both of A and B false? false || false false || true

\ true || false

\ ! negates the true or false Boolean test.

Professional Development Workshop # E h llﬁ’
Page :317 © 1993 - 2018 KIPR Dt a



while, if, and Logical operators

examples

while ((get_create lbump() == () && (get_create rbump() == 0))
{

// Code to execute ...

while ((digital( == 0) && (digital(15) == 0))
{
// Code to repeat ...

if ((digital( == 1) || (digital(lz) !'= 0))
{

// Code to execute ...

if ((analog(®) < 512) || (digital(i2) == 1))
{
// Code to repeat ...
}

Professional Development Workshop # E h lr
Page :318 © 1993 - 2018 KIPR Dt a



Page

Using Logical operators

What does this say?
/
int main() /
{
create_connect() ;
while ((get_create lbump() == 0) && (get create rbump() == 0))

{

create drive direct (100, )/

}

create_stop();
create_disconnect();
return 0O;

: 319

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball



Description: Write a program for the KIPR Wallaby that drives the Create

forward for 1 meter or until a bumper is pressed, and then stops.
®* How do we check for distance traveled? Answer: get create distance() <

®* How do we check for bumper pressed? Answer: get create rbump() == 0
®* How do we check for that both are true?
Answer: ( (get create_distance()) < ) && (get _create rbump() == 0))

Analysis: What is the program supposed to do?

Pseudocode Comments

1. Connect to Create. // 1. Connect to Create.

2. Loop: Is distance < 1000 AND not bumped? // 2. Loop: Is distance < 1000 AND not bumped?
1. Drive forward. //  2.1. Drive forward.

3. Stop motors. // 3. Stop motors.

4. Disconnect from Create. // 4. Disconnect from Create.

5. Endthe program. // 5. End the program.

Professional Development Workshop # E h llﬁ’
Page :320 © 1993 - 2018 KIPR Dt a



Analysis: Flowchart -
Begin
\/

Connect to Create.

s distance <
1000
AND not

Drive forward.

\L H Stop motors.

v

Disconnect from Create.

\/

Return 0

e

Professional Development Workshop # E h ll‘s’
Page :321 © 1993 - 2018 KIPR Dt a



Solution:

Pseudocode (Comments)

int main()
{
// 1. Connect to Create.
// 2. Loop: Is distance < 1000
// AND not bumped?
// 2.1. Drive forward.
// 3. Stop motors.
// 4. Disconnect from Create.
// 5. End the program.

»

Page :322

Source Code

/| int main()

{
// 1. Connect to Create.
create_connect();

// 2. Loop: Is distance < 1000 AND not bumped?
while ((get_create distance() < ) && (get_create rbump() ==

{
// 2.1. Drive forward.

create_drive direct( , )
} // end while

// 3. Stop motors.
create_stop() ;

// 4. Disconnect from Create.
create_disconnect() ;

// 5. End the program.

\ return 0;

\| } // end main

))

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball




Reflection: What did you notice after you ran the program?

®* What happens if the Create right bumper is pressed before the Create travels a
distance of 1 meter?

®* What happens if the Create right bumper is not pressed before the Create
travels a distance of 1 meter?

®* What happens if the Create left bumper is pressed instead?

®* How could you also check to see if the Create left bumper is pressed? Answer:

while ((get_create distance() < ) && (get create lbump() == 0) && (get_create rbump() == 0))

Professional Development Workshop # B h lr’
Page :323 © 1993 - 2018 KIPR Dt a



Mechanical Design

e At times you may have noticed that you solved problems
not through modifying your code but rather by making
changes to the mechanical design of your robot(s).

* The next couple slides provide some examples

* Additional resources may be found on the team home
base and online

* For example a great intro to Lego® technic design
patterns can be found at:

http://handyboard.com/oldhb/techdocs/artoflego.pdf

Professional Development Workshop # B h lr’
Page :324 © 1993 - 2018 KIPR Dt a.



Counterbalance

* Motors and servos have limited power
e Struggling to lift a structure?

e Use coins as a counterbalance

N

coins

motor/servo

Professional Development Workshop # B h lr’
Page :325 © 1993 - 2018 KIPR Dt a



Gearing and Gear Trains

By “combining” gears into a “gear train”, using gears of
varying sizes you can INCREASE or DECREASE the speed and

power (torque) of your motors!

motor/servo

 If your motor gear is larger than the next
gear in the “gear train” the “driven gear”
spins FASTER but at the expense of LESS
torque (power).

driven gear

* If your motor gear is smaller than your motor/servq

¥

next gear in the “gear train” the “driven
gear” spins SLOWER but with MORE
torque (power). driven gear

Professional Development Workshop # B h lr’
Page :326 © 1993 - 2018 KIPR Dt a




f‘"”f* Gears to Increase Servo Range
=

 |If you attach a larger gear to your servo spline and the
next gear in the “gear train” is smaller the range of the
servo is increased
* |If the driven gear has % # of teeth as the servo gear you double

(x2) the range of the servo (now 360 degrees instead of 180
degrees).

Servo gear

driven gear

Professional Development Workshop # E h llﬁ’
Page :327 © 1993 - 2018 KIPR Dt a



Resources and Support

Team Home Base
Remind, YAC, Community, PYR, and social media
T-shirts and awards
What to do after the workshop

Professional Development Workshop # E h lr
Page :328 © 1993 - 2018 KIPR Dt a



Professional Development Workshop # B h lr
Page :329 © 1993 — 2018 KIPR Dt a


http://homebase.kipr.org/

Botball Team Home Base

KIPR Support
® E-mail: support@Kkipr.org
®* Phone: 405-579-4609
® Hours: M-F, 8:30am-5:00pm CT

Forum and FAQ
® Site: http://homebase.kipr.org

¢ Content:

Documentation Manual and Examples
Presentation Rubric & Example Presentation
DemoBot Build Instructions & Parts List
Controller Getting Started Manual
Construction Examples

Hints for New Teams

Sensor & Motor Manual

Game Table Construction Documents

All 2018 Game Documents

Professional Development Workshop # E h lr’
Page :330 © 1993 - 2018 KIPR Dt a


mailto:support@kipr.org
http://homebase.kipr.org/

Botball Remind

https://www.remind.com/join
Botball General: @botballl8

® Greater Chicago: @gcbotl8 °* New England: @nebot18
* Greater DC: @gdcbot18 °* New Mexico: @nmbot18
® Greater Los Angeles: @glabot18 * New York/New Jersey: @njnybot18

® Greater San Diego: @gsdbot18 o
® Greater St. Louis: @gstlbot18
®* Hawaii: @hbotball18

Northern California: @nocalbot18
* Oklahoma: @okbot18
®* Texas: @texbotl8

Professional Development Workshop # B h lr
Page :331 © 1993 - 2018 KIPR Dt a


https://www.remind.com/join

Page

333

P:Y:R

Program Your (Botball) Robot

HOME BLOG LINKS START HERE! ACKNOWLEDGEMENTS THE SITE MONKEY

Smart Robots.

Cutting Edge
i Technology.

Program
inC

Botball Programming

PYR Stands for Program Your Robot, and it is an online introductory course in programming
Botball robots. It assumes you can download the programming environment from the Botball
website without further instruction, but is meant for a novice at programming in C. It pro-
vides brief instructions on how to build a demo robot and building a sensor bumper for ex-
periments with the code, but otherwise this site is about programming and the KISS-C Inte-
grated Development Environment. Program Your Robot assumes you can find other sources
for guidance in physical robot construction.

https://botballprogramming.org

Professional Development Workshop
© 1993 — 2018 KIPR

#Botball


http://botballprogramming.org/

Social media

Botball Educational Update Page Info

Robotics Program
¥ ¥ % % ¥ (15 ratings)

v Liked ~

| v Following % ~ |

1,874 likes - 165 talking about this - 15
were here
@ Robotics - Educational Organization me

@ 1818 W. Lindsey, Norman, Oklahoma 73069
L. (405) 579-4609
@ Closed until Monday 9:00 am - 5:00 pm

1

xxxmxxxxx

G@a m TS
XXXXXXXXXXX TWEETS FOLLOWING FOLLOWERS FAVORITES s Foll
2,606 102 334 16 i

Tweets Tweets & replies Photos & videos

Botguy™ / Botball®

=P A =T

—

Professional Development Workshop # E h lr
Page :334 © 1993 - 2018 KIPR Dt a




Social media

Botball Educational Robotics Program Muscogee ﬁ Botball Educational Robotics Program
Nation News's photo ' er 26 1

Dr. Miller writing code on his iPhone with the web-based KISS IDE.
Creat news! Getting ready for 2016 already!

E Botball Educational Robotics Program

..... . % Botguy ('s a good hug!

Muscogee Nation News

MCN to implement robotics educational program

Sterling Cosper/Editor

Botball aimed at enhancing student STEM training

.. See More

Like - Comment - Share - ¢ 13 (12

ke - Comment - ¢4 29

Professional Development Workshop # B h lr’
Page :335 © 1993 - 2018 KIPR Dt a



Botball T-shirts

https://mnscustomapparel.com/products/official-2018-botball-tournament-tee
$12 to $14 per shirt

Notes:

*T-shirts are not provided.

*Teams may order shirts directly
via the link above

If schools are using a purchase order please contact MNS Custom Apparel
directly (service @ mnscustomapparel.com)

Professional Development Workshop # E h lr
Page :336 © 1993 — 2018 KIPR Dt a




Tournament awards

Team 12-0001
Carroliton, , Toxas

Professional Development Workshop # E h lr
Page :337 © 1993 - 2018 KIPR Dt a



Tournament awards

There are a lot of opportunities for teams to win awards!

® Tournament Awards
® Qutstanding Documentation
® Seeding Rounds
® Double Elimination
® QOverall (includes Documentation, Seeding, and Double Elimination)

* Judges’ Choice Awards (# of awards depends on # of teams)
® KISS Award
® Spirit of Botball
® Qutstanding Engineering
® Qutstanding Software
® Spirit
® Qutstanding Design/Strategy/Teamwork

Professional Development Workshop # B h lr’
Page :338 © 1993 - 2018 KIPR Dt a



What to do after the workshop

1. Recruit team members.

If you haven’t already recruited team members you can use the materials from
the workshop to show to interested students.

Page

Hit the ground running.

:339

Do not wait to get started—time is of the essence!

You only have a limited build time before the tournament.

The workshop will still be fresh in your mind if you start now.

Plan on meeting sometime during the first week after the workshop.

Professional Development Workshop # B h ll“’
© 1993 - 2018 KIPR Dt a



What to do after the workshop

3. Plan out the season.

® Students will not inherently know how to manage their time. Let’s face
it—it is difficult for many adults!

®* Mark a calendar or make a Gannt chart with important dates:
®* 1st online documentation submission due
®* 2nd online documentation submission due

®* 3rd online documentation submission due
®* Tournament date

®* Set dates and schedules for team meetings.
®* Plan on meeting a minimum of 4 hours per week.

Professional Development Workshop # B h lr’
Page :340 © 1993 - 2018 KIPR Dt a



What to do after the workshop

4. Build the game board.
® If you can’t build the full game board, you can build % of the board.

®* You could tape the outline of the board onto a floor if you have the right
type of flooring.

4. Organize your Botball kit.

®* Organized parts can lead to faster and easier construction of robots.

4. Understand the game.

®* Go over this with your students on the first meeting after the workshop.

Professional Development Workshop # E h llﬁ’
Page :341 © 1993 - 2018 KIPR Dt a



} // end workshop

Please take our survey to give feedback about the workshop:

https://www.surveymonkey.com/r/LCYB7RY

Professional Development Workshop # E h lr
Page :342 © 1993 - 2018 KIPR Dt a


https://www.surveymonkey.com/r/LCYB7RY

