
Using Servos
● Key Concepts:

○ Students will familiarize themselves with servo motors and how
to control them.

● Pacing:
○ Over several class periods

Table of Contents

2

Learning About Servo Motors (Goals)
Lesson: Learning About Servo Motors

-Resources
Activity 1: Intro to Servos
Servo Functions
Activity 2: set_servo_position()
Activity 3: Wave the Arm
Activity 4: Hokey Pokey (Dancing Robot)
Activity 5: Touch the Can
Activity 6: Tag, You’re Out
Assessment
What is a Claw?
Activity 7: Engineering a Claw
Activity 8: Using Two Servos
Activity 9: Go Fetch!
Activity 10: Recycle the Can
Assessments
Back to the Drawing Board
Assessment Rubrics
Rubrics

Click on me to return
to Table of Contents

#
#
#
https://docs.google.com/a/norman.k12.ok.us/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit?usp=sharing

Learning About Servo Motors

Goals
• To distinguish between motors and servo motors
• To help students understand how to use Servo Motors with their robots

• Enable, disable, set position and get position functions
Preparation
• Have KISS IDE up and running
• Have a robot ready to go
• Have a servo motor
Activities:

• Learning About Servos
• Activity 1: Intro to Servos
• Activity 2: set_servo_position()
• Activity 3: Wave the Arm
• Activity 4: Hokey Pokey (Dancing Robot)
• Activity 5: Touch the Can
• Activity 6: Tag, You’re Out
• Activity 7: Engineering a Claw
• Activity 8: Using Two Servos
• Activity 9: Go Fetch!
• Activity 10: Recycle the Can

#
#

Standards

Goal:
• Students will familiarize themselves with servo motors and how to control them.
• Students will familiarize themselves with the functions msleep()and motor()
• Students will understand how to move their robots in the following manner: forwards, backwards,

straight, circles, right and left turns
Standards:

Common Core State Standards Math Practices

CCSSMP1: Make sense of problems and persevere in solving them

CCSSMP2: Reason abstractly and quantitatively

CCSSMP4: Model with mathematics

CCSSMP6: Attend to precision

CCSSMP8: Look for and express regularity in repeated reasoning
Next Generation Science and Engineering Practice

1: Asking questions and defining problems
2: Developing and using models
3: Planning and carrying out investigations
4: Analyzing and interpreting data
5: Using mathematics and computational thinking
6: Constructing explanations and designing solution
7: Engaging in argument from evidence obtaining, evaluating, and communicating information

Standards Continued

Standards Continued:
2016 ISTE Standards

Empowered Learner
1c: Students use technology to seek feedback that informs and improves their practice and
to demonstrate their learning in a variety of ways.
1d: Students understand the fundamental concepts of technology operations, demonstrate
the ability to choose, use and troubleshoot current technologies and are able to transfer
their knowledge to explore emerging technologies.

Knowledge Constructor
3d: Students build knowledge by actively exploring real-world issues and problems,
developing ideas and theories and pursuing answers and solutions.

Innovative Designer
4a: Students know and use a deliberate design process for generating ideas, testing
theories, creating innovative artifacts or solving authentic problems.
4b: Students select and use digital tools to plan and manage a design process that considers
design constraints and calculated risks.
4c: Students develop, test and refine prototypes as part of a cyclical design process.
4d: Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with
open-ended problems.

Computational Thinker
5a: Students formulate problem definitions suited for technology-assisted methods such as
data analysis, abstract models and algorithmic thinking in exploring and finding solutions.

Prerequisite

Robot needs to have one servo with a 5 hole
servo horn attached.

No claws!

• A servo motor (or “servo” for short) is a motor that rotates to a specified
position between 0° and 180°.

• Servos are great for raising an arm or closing a claw to grab something.

• Servo motors look very similar to non-servo motors, but there are
differences…

• A servo has three wires (orange, red, and brown) and a black plastic plug.

• Servo motors only rotate 180° (not 360° like the non-servo motors)

Lesson: Learning About
Servo Motors *

Large servo

*For more information about Servo Motors, refer to the Sensor and Motor
Manual on the KISS IDE Help.

https://drive.google.com/open?id=1gBdwHm7r3BwxCsmk7uI8TBBtoY9gVdbIc-It6NwgTWE

Learning About Servo Motors

KIPR Wallaby servo ports

Learning About Servo Motors
Plugging in Servos

**Plug your servo into port 0
Be careful and make sure to plug it into
the pins and not in between the pins

•The KIPR Robotics Controller has 4 servo ports numbered 0 (bottom)
& 1 (top) on the left, and 2 (bottom) & 3 (top) on the right.

•Notice that the case of the KIPR Robotics Controller is marked:

•(S) for the orange (signal) wire, which regulates servo position

•(+) for the red (power) wire

•(−) for the brown (ground) wire (“the ground is down, down is
negative”)

(S) signal wire
(+) power wire
(–) ground wire

Servo Port #3
Servo Port #2

Plugging in servos

(S) signal wire
(+) power wire
(–) ground wire

Servo Port
#3
Servo Port
#2

Learning About Servo Motors
• If you think of servo motors range of motion like a protractor

o The 180° is divided into 2048 positions (0-2047). Remember, we start
counting with 0 and not 1

o This allows for greater precision when setting a position (you have
2048 different settings you can choose)

• The default position is 1024 (centered)

• Your servo motor can only move ½ a circle, (your wheel motors can move a

full circle).

0

1024

2047

The Servo Screen
1. Make sure your Link is turned on

2. Plug a servo motor into Servo Port 0

3. Follow the guides to access the Servos Page on the
wallaby

Use the Servo Widget

Centering Servo Horn

• The Servo motor only has a range of motion (rotates) ~180
degrees, but you cannot see by looking at the motor where
this range of motion is located in relation to your robot.

• Using the Servo Widget, enable the servo on your robot.
When you enable it, it will go to 1024. You can unscrew the
servo horn on your arm or claw and place it in the center of
the rotation if it is not already in the correct position.

Centering Servo Horn

• The Servo motor only has a range of motion (rotates) ~180
degrees, but you cannot see by looking at the motor where this
range of motion is located in relation to your robot

• Using the Servo Widget enable the servo on your robot. When
you enable it, it will go to 1024. You can unscrew the servo horn
on your arm or claw and place it in the center of the rotation if
it is not already in the correct position 1024

The Servo Screen (Cont.)

1. Use the Servo Page to test your Servo.

Select the
Servo Port

This is the
Servo
Position Enables the

Servo

The Servo Screen (Cont.)

1. Use the Servo Page to test your Servo.

Use your finger to
move the dial

Servo
Maxed out
at 2047 Servo at

1513

Servo at
537

REMEMBER DO NOT KEEP PUSHING A SERVO BEYOND
THE 0 OR 2047 POINTS- THIS CAN BURN SERVOS OUT!

• To help save power, servo ports by default are not active until they are
enabled.

• Functions are provided for enabling or disabling all servo ports.
• A function is also provided for setting the position of a servo.

• enable_servos(); // Activate (turn on) all servo ports.

• set_servo_position(2, 925); // Rotate servo on port #2 to position 925.

• disable_servos(); // De-activate (turn off) all servo ports.

• Remember: the range of positions is from 0-2047
• The default position when servos are enabled is 1024 (centered), which means that

all servos will automatically move to this position when enable_servos is called.
• You can “preset” a servo position by calling set_servo_position before calling

enable_servos. This will make the servo move to this position rather than center.

Servo Functions

 Intro to Servos

Materials: built robot with servo attached,
computer, notebook

Activity:
1. In your notebook, write down the port # the servo (arm) is plugged into

or comment it within your program. // arm = 0

2. Set servo to up (vertical- pointing straight up) position. In your
 notebook, write down and label the up position or comment them
within your program (see next slide) // up = 1234

3. Set servo position so that the arm is horizontal (level with the ground).
In your notebook, write down and label the horizontal position or
comment them within your program (see next slide).
//Horizontal = 567

4. Set servo position so that the arm is down (but not touching the
surface). In your notebook, write down and label the down position or
comment them within your program (see next slide).

 // down = 230

Commenting your servo port and
placement within your program
int main ()
{
// arm = 0
// down = 230
// horizontal= 567
// up = 1234
printf(“Sarah_Move_Servo”);
return 0;
}

This can also be done in a notebook.

Make your comments after the first
curly bracket and before the print f

Arm is plugged into servo port 0

Arm down position is 230

Arm horizontal position is 567

Arm up position is 1234

Activity 2
 set_servo_position();

Wheel

Create a new project in your folder: “Name” Servo
Replace the words “Hello World” in the printf function with “Name”, Servo
Write a program for your robot to:
Pseudocode (Task Analysis)

1. Enable servos
2. Move servo 0 to the angled down position
3. Allow 1 second to complete moving to position
4. Move servo 0 to the horizontal position
5. Allow 1 second to complete moving to the position
6. Move servo 0 to the vertical (straight up) position
7. Allow 1 second to complete moving to position
8. Shut everything off

• Analysis:

Activity 3
Wave the Servo Arm

Flowchart

Begin

Enable servos.

Move servo to vertical

Wait for 1 second.

Disable servos.

End

Return 0.

Move servo to horizontal.

Wait for 1 seconds

You can use the JBC
Code Planning
Sheet to write your
pseudocode.

Click Key for Solutions

Move servo to vertical

Move servo to horizontal.

Wait for 1 seconds

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.p4

Possible Solution
#include <kipr/botball.h>

int main ()
{
// arm = 0
// up = 1234
// down = 230
// horizontal = 567
printf(“Sarah_Move_Servo\n”);

enable_servos(); //turn servos on
set_servo_position (0, 230); // arm down
msleep (500);

set_servo_position (0, 567); // arm horizontal
msleep (500);

set_servo_position (0, 1234); // arm up
msleep (500);

disable_servos (); // turn servos off

return 0;
}

Create a new project in your folder: “Name” Hokey Pokey.
Replace the “Hello World” in the printf function with “Name”
Hokey Pokey.

Have the robots “dance” by moving their (one) servo and their
motors to the Hokey Pokey

You put your right hand in, //Move servo to horizontal position
You put your right hand out, //Move servo to vertical position
You put your right hand in, //Move servo to horizontal position
And you shake it all about, //Move robot back and forth rapidly

You do the hokey pokey,
and you turn yourself around, //Turn robot in a circle
That what it's all about.

Activity 4 Hokey Pokey
(Dancing) Robot

Click Key for Solutions

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.p4

Assessment
Assessment 5: Dance Party

Setup: Use Surface-A. No game pieces required. Music required.

Goal: The robot must “dance” along with the music.

Limitations:
1. All robots must be autonomous (no remote controls, wireless communication, or touching the

robot after starting a run).
2. The robot must start completely behind the vertical projection of the inside of the start line.
3. The students must provide their own music clip that plays loud enough for the judges to hear.

Music clips can be played from a cell phone or the students can provide live music (singing).

Completion:
The robot must leave the starting box before completing the dance moves and must complete all of the
following moves:

Must complete at least one 360 degree clockwise turn
Must complete at least one 360 degree counter clockwise turn
Must move forward
Must move backward
Must wave the servo (up and down at least once)

25

Activity 5: Touch the Can
Create a new project in your folder: “Name” Touch the Can
1. Robots must start on or behind the starting mark and move to the

object with the goal of touching the object WITH the LEGO attached to
the servo in the shortest amount of time

2. The pointer must start in the vertical position and then move to the
position required to touch the can

Extensions

1. Move the can to various distances

2. Make the object smaller and harder to navigate to

3. Math- have them measure the distance to the object and time the
robot and then calculate rate/speed. Speed = Distance/Time.

Soda Can
Starting line

Soda Can
Starting line

W
h
e
e
l

W
h
e
e
l

Activity 6: Tag, You’re Out

Create a new project in your folder: “Name” Tag You’re Out
• “Tag” with your servo pointer the objects, which are then removed from the board

o Must tag with the pointer only- if they touch it with any part of the robot other
than the pointer it does not count

o Pointer has to change position to tag (they can’t drive around with the pointer
out front all of the time)

o Use the numbered circles on Surface A to place items.

• Score points for every item removed from the area

Starting line Starting line

Assessment
Assessment 9: Add it Up

Setup: Use Surface-A.

Goal: Drive the robot to the numbered circles on the mat (doesn’t have to be sequential), and then use a
servo to touch the circles.

Limitations:
1. All robots must be autonomous (no remote controls, wireless communication, or touching the

robot after starting a run).
2. The robot must start completely behind the vertical projection of the inside of the start line.
3. Robots must use a servo to lower an effector to touch the circle (it cannot be something that is

always dragging or always touching the surface)
4. To count as touching a circle part of the robot must be lowered by a servo and touch either inside

the red circle or on any part of the red circle line itself.
5. You can only touch one circle at a time.

Completion: When the robot drives around the can and returns behind the starting line.

Extra Optimization: Change the goal for the number of touch points accrued in
 a single run.

28

Introduction to a Variable:

Some reasons to use a variable:

1. You don’t have to remember which port # is your arm and
which is your claw—the computer remembers for you

2. You don’t have to remember which servo position is up or
down or open or closed

3. It makes your program easier to read and understand

4. Makes it easier to debug your program

#

Turning Your Comments into Code

#include <kipr/botball.h>
int main ()
{

int arm = 0;
int up = 1234;
int down = 230;
int horizontal = 124;

printf(“Sarah_Move_Servo\n”);

return 0;
}

#include <kipr/botball.h>
int main ()
{

// arm = 0
// up = 1234
// down = 230
// horizontal = 124

printf(“Sarah_Move_Servo\n”);

return 0;
}

Remove the
forward slashes

from your
comments, add
int and add the

semicolon

Possible Solution
int main ()
{

int arm = 0;
int up = 1234;
int down = 230;
int horizontal=124;

printf(“Hello World\n”);
enable_servos ();

set_servo_position (arm,down); // port 0, position 230
msleep (500);

set_servo_position (arm,horizontal); // port 0, position 124
msleep (500);

set_servo_position (arm,up); // port 0, position 1234
msleep (500);

disable_servos ();
return 0;
}

Drive Motors
1. A variable should go inside the int main block of code (i.e., inside the { })

immediately after the starting curly brace (i.e., {).

int main ()
{

// left = 0
// right = 3

printf(“Sarah_Drive\n”);

motor (0,100);
motor (3, 100);
msleep (1000);

return 0;

}

int main ()
{

int left = 0;
int right = 3;

printf(“Sarah_Drive\n”);

motor (left,100);
motor (right,100);
msleep (1000);

return 0;

}

Remove the forward
slashes from your
comments, add int

and add the
semicolon

What is a Claw?

Have you seen a claw working before?

What job (function) does it complete?

Think about the claw.
How is it built (structure)?

– The claw is great for grabbing (function) objects.
– The claw can lift things up (function).
– The claw is not good at pushing things (function).
– What does it look like? (structure).

Moving Objects with Your Robot

Claws/Grippers

Engineering*

A structure can be built onto the servo(arm) on your demo bot that can be closed and
opened to grab an object

• You can build this out of LEGO and KMP

o There are a lot of photos of claws and grabbers on YouTube, the Botball
webpage and the Botball Educational Robotics Facebook page

• The easiest and first grabber to build has a static (unmovable) side and a
side with a servo that closes

o Write a function for opening and closing the servo

• You can use two servos, one to raise and lower the claw/gripper and one to
open and close the claw/gripper

Go to the Robot Building Guide and follow the
instructions to build a claw on your robot. Or use the
Engineer Design Process to create your own.

Activity 7 : Engineering a Claw

Activity 8: Using Two Servos

Create a new project in your folder: “Name” Using two servos

For this activity, you are going to grab the can with the claw without moving the robot.

Setup: The wallaby will be set with the claw horizontal and open. The can will be
placed inside the claw. Comment the positions with the program (see next slide).

Pseudocode

1. Turn on servo

2. Claw horizontal

3. Claw open

4. Close claw

5. Arm up

6. Turn off servos

**** remember you must have wait time (msleep) Click Key for Solutions

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.p4

Commenting within your program

int main ()
{
// arm = 0
// up = 1234
// down = 230
// horizontal =1000
// claw = 3
// open =1246
// closed =34

printf(“Hello World!\n”);

return 0;
}

Commenting your positions
makes it easy to remember
the correct positions

means arm is in port 0
means up position is 1234

means down position is 230
means position is 1000

means claw is in port 3

means open claw position is 1246
means closed claw position is 34

Activity 9: Go Fetch!

Create a project in your folder: “Name” Go Fetch

For this activity you will design a claw that will go out and pick
up a can that is on circle #9 and return home. Hint: Great time to
“Be the Robot”.

• Things to think about:

– How many servos will you use?

– Do you need to give the servos time?

– When should you set the servo position?

Click Key for Solutions

 An extension for Using
Variables

https://docs.google.com/presentation/d/1xTekAxBMv5eivNS9ORGGbVfaMj4UbUZmFIp2f9X5OyY/edit#slide=id.p4
https://drive.google.com/open?id=1GpqHWbdHxPM7XmbqT-M_K4w0jZ5Htf3X-I7L-SmTLQE
https://drive.google.com/open?id=1GpqHWbdHxPM7XmbqT-M_K4w0jZ5Htf3X-I7L-SmTLQE

1. enable
2. arm horizontal
3. open claw
4. forward can six
5. all off
6. close claw
7. up claw
8. back
9. disable

An Example of Pseudocode

Activity 10: Recycle the Can
Create a new project in your folder: “Name” Recycle the Can
Robots must start on or behind the starting mark and move to the object with the goal
of bringing the can back to the starting line.

Make the arm/claw/grabber start in the upright position and then lower itself after
starting or approaching the object.

Extensions

• Move the can to various distances

• Make the object smaller and harder to navigate to

• Math- have them measure the distance to the object and time the robot and then
calculate rate/speed

Soda Can
Starting line

Soda Can
Starting line

Soda Can
Starting line

Recycle the Can(s)
Same as recycle the can only with more objects

• Place the items at known or set locations

o This is because you are still “dead reckoning”, once we learn more
logic and decision making, we can program smarter robots that will
use sensors to locate and find the objects, which can then be tagged
and removed.

Starting line

Starting line

Starting line

Assessment
Assessment 21: Foot Tall

Setup: Use Surface-A.

Goal: The robot will drive out to the can and lift the can so that the lowest part of the can is over
11 inches above the mat.

Limitations:
1. All robots must be autonomous (no remote controls, wireless communication, or touching

the robot after starting a run).

2. The robot must start completely behind the vertical projection of the inside of the start line.

Completion: The robot must hold the can over 11 inches for 3 seconds so that the judges have
time to measure.

Extra Optimization: The cans can be moved to a random circle, multiple cans can be added,
empty cans can be swapped for full cans.

Back to the Drawing Board

Imagine you need to design a claw that will go out and pick up a dry
erase marker or a claw that can lift a can 10 inches off the ground.

In your notebook:
• Create a claw design that could grip a marker.
• Create a claw design that could raise an object 10 inches off the

ground.

• Things to think about:
– How many servos will you use?
– Do you need to give the servos time?
– When should you set the servo position?

Assessment
Assessment 22: Stackerz

Setup: Use Surface-A. Place 2 empty 12oz soda cans, one in circle 5 and the other in circle 7.

Level: Advanced

Skill: Precision manipulating.

Desired Outcome: The robot will stack one can on top of the other.

Limitations:

1. All robots must be autonomous (no remote controls, wireless communication, or touching

the robot after starting a run).

2. The robot must start completely behind the vertical projection of the inside of the start line.

3. The robot’s drive wheels must completely leave the starting box (crossing over and no

longer touching the black line marking the starting box).

4. The bottom of the top can must be touching the top of the bottom can.

5. The robot may not be touching either can at the end of the round.

Completion: When the robot places one can on top of the other can.

Extension – Move the cans to different circles, swap the empty cans for full cans.

Assessments and Rubrics

Suggestions: Understanding or Group Collaboration rubrics

45

https://docs.google.com/a/norman.k12.ok.us/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit?usp=sharing

