
Writing Your First Program

● Key Concepts
○ Students will learn about the C program language,

functions printf (),msleep (), debugging, and
connection failed

● Pacing
○ 30-45 minutes per Activity

Table Of Contents
Writing Your First Program

Connecting Your Computer to Your Wallaby
Connecting your Computer to the Wallaby Using Wi-fi
Accessing KIPR Software Suite (Using Wi-FI)
Connecting to Your Wallaby Using the USB Cable
Accessing Kipr Software Suite (Using USB Cable)
Welcome to the Software Suite
Making a Folder
Add a Project
Name Your Project
Compiling Your First Project
Running Your First Program

The C Template
Learning About The C Template (2 Slides)

Click on me to return
to Table of Contents

Table of Contents
(Cont.)

Template Components
Functions

Blocks of Code

Programming Statements

Terminating Statements

Ending the main function

Program speed

Curly Braces

Learning About Psuedocode (2 Slides)

Using the printf() Function- Activity 2 (12 Slides)

Extensions

Making Observations-Activity 3 (3 Slides)

Introduction msleep() Function- Activity 4 (10 Slides)

Debugging-Activity 5 (5 Slides)

Connection Failed Errors

Assessment Rubrics

https://drive.google.com/open?id=1olOH-3AaOJEpipJyogwSbyjpX9koB1Yz7TD0rvgTG9Q
#
https://docs.google.com/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit#slide=id.g160ba0e388_5_5

Writing Your First Program
Goals:

• Students will use a “Hello, World” template to write and compile their first program to the KIPR Link
• Students will develop an understanding of the components that make the C Template: Hello, World.
• Students will develop an understanding of the msleep() function.
• Students will learn the importance of and how to debug their programs.

Standards:

Common Core State Standards Math Practices

CCSSMP1: Make sense of problems and persevere in solving them

CCSSMP2: Reason abstractly and quantitatively

CCSSMP4: Model with mathematics

CCSSMP6: Attend to precision

CCSSMP8: Look for and express regularity in repeated reasoning
Next Generation Science and Engineering Practice

1: Asking questions and defining problems
2: Developing and using models
3: Planning and carrying out investigations
4: Analyzing and interpreting data
5: Using mathematics and computational thinking
6: Constructing explanations and designing solutions
7: Engaging in argument from evidence obtaining, evaluating, and communicating information

Standards Continued

Standards Continued:
2016 ISTE Standards

Empowered Learner
1c: Students use technology to seek feedback that informs and improves their practice and
to demonstrate their learning in a variety of ways.
1d: Students understand the fundamental concepts of technology operations, demonstrate
the ability to choose, use and troubleshoot current technologies and are able to transfer
their knowledge to explore emerging technologies.

Knowledge Constructor
3d: Students build knowledge by actively exploring real-world issues and problems,
developing ideas and theories and pursuing answers and solutions.

Innovative Designer
4a: Students know and use a deliberate design process for generating ideas, testing
theories, creating innovative artifacts or solving authentic problems.
4b: Students select and use digital tools to plan and manage a design process that considers
design constraints and calculated risks.
4c: Students develop, test and refine prototypes as part of a cyclical design process.
4d: Students exhibit a tolerance for ambiguity, perseverance and the capacity to work with
open-ended problems.

Computational Thinker
5a: Students formulate problem definitions suited for technology-assisted methods such as
data analysis, abstract models and algorithmic thinking in exploring and finding solutions.

Writing Your First Program
Objective: Students will use a “Hello, World” template to write and compile
their first program on the KIPR Wallaby
Materials: Built robot, Computer, (usb cable optional)
Lesson:
1. Use the Thinking Notes Strategy to read and discuss the following slides.
 Connecting to Your Wallaby Wi-fi

Loading the Starting Web Page
Connecting Your Wallaby USB Cord
Welcome to the Software Suite
Learning about the Software Suite
Making a Folder
Add a Project
Name Your Project
Compiling Your First Project
Running Your First Program
Connecting the Link
Compiling Your Program
Compile Succeed
Running Your Program (3 Slides)

https://k20center.ou.edu/instructional-strategies/thinking-notes/
#
#
#
#
#

 Controller Guide

 2 Servo
Motor Ports

(Port # 0 & 1)

2 Motor Ports
(Port # 0 & 1)

10 Digital
Sensor Ports
(Port # 0 - 9)

6 Analog
Sensor Ports
(Port # 0 - 5)

2 Motor Ports
(Port # 2 & 3)

 2 Servo
Motor Ports

(Port # 2 & 3)

Color Touch Screen

KIPR Robotics Controller
Wallaby

Power Switch

USB

Micro HDMI

Power (external battery
connection)

Download port
(micro USB)

• For charging the controller’s battery, use only the
power supply which came with your controller.

• It is possible to damage to the battery from using the
wrong charger or from too deep a discharge!

• The standard power pack is a lithium iron phosphate
(LiFe) battery, a safer alternative to lithium polymer
batteries. The safety rules applicable for re-charging
any battery still apply:

• Do NOT leave the unattended while charging.
• Turn the Wallaby off or unplug it from the battery while

charging
• Charge in a cool, open area away from flammable materials.

Charging the Controller’s Battery

Important Information

All connections are as follows:

• Yellow to Yellow

• White small to White small (to the charger,
may be white to black)

• Black to Black

• The KIPR Robotics Controller – Wallaby, uses an external
battery pack for power.

• It will void your warranty to use a battery pack with the Wallaby
that hasn’t been approved by KIPR.

• When your Wallaby is not in use please be sure to do
the following:
• TURN YOUR WALLABY OFF
• UNPLUG THE BATTERY FROM THE WALLABY

• Leaving your battery plugged in and your Wallaby turned on will
drain your battery to the point where it can no longer be charged.
If you plug your battery into the charger and the blue lights
continue to flash, then you have probably drained your battery to
the point where it cannot be charged again. If this happens you can
call the KIPR office and purchase a replacement - 405-579-4609.

Wallaby Power

Connecting your Computer to
your Wallaby

There are 2 ways to connect your wallaby
controller to your computer in order to access the
KIPR Software Suite.

1. Wi-Fi

2. USB Cord

We are going to connect with Wi-Fi first!

Connect the Wallaby to your Browser device via Wi-Fi
1. Turn on the Wallaby with the black switch on the side.
2. Every wallaby has a unique number/name.
3. To find the number of your wallaby click “about” on your controller.
4. Look at your Wi-Fi info and see the SSID: that is your wallaby number and wallaby

password.

5. Go to the Wi-Fi icon on your computer and click on your wallaby number and add
your password (this may take a few minutes). You will see a blue LED light.

Not recommended at Tournament

Connecting Your Computer to the Wallaby
(using Wi-Fi)

*** You may need to take Wi-Fi preference off of selecting your
school or another site, so it will not keeping reverting to it.

1. Launch your web browser (such as Chrome or Firefox).

2. Copy this IP address into your browser’s address bar
followed by “:” and port number 8888; e.g.,

 192.168.125.1:8888

3. The KISS Software Suite will now come up in your
browser.

 4. You may use a computer, tablet or even a smart

phone.

Accessing KIPR Software Suite
 (using Wi-Fi)

IP address Port #

1. Connect your device to the Wallaby with a USB cable

Connecting to Your Wallaby
Using the USB Cable

small end of USB cable

large end of USB cable

Accessing the KIPR Software Suite
Using the USB Cable

1. Launch your web browser (such as Chrome or
Firefox).

2. Copy this IP address into your browser’s address
bar followed by “:” and port number 8888; e.g.,

 192.168.124.1:8888

4. The KISS Software Suite will now come up in your
browser.

5. You may use a computer, tablet or even a smart

phone as long as they can connect through

Wi-Fi.

IP address Port #

– From the Software Suite select "Shutdown"
• Select "Yes"

– From the Wallaby Home Screen press "Shutdown"
• Select "Yes"

– Go to your Wallaby screen and check to see if it is
“halted”

– Slide the power switch to off

– Unplug the battery being careful not to pull on the
wires

***If you powered down, go back to slide 10 to

reconnect.

Wallaby Power Down

• To make it easier for you to
learn and use a
programming language,
KIPR provides a web-based
Software Suite, which will
allow you to write and
compile source code using
the C programming
language.

• The development package
will work with almost any
web browser except
Internet Explorer.

Welcome to the Software Suite

1. Click KISS IDE
2. Under Project explore you
have options to add a user by

clicking the + sign.

3. Name your New User, “Student name and folder” . This
is similar to a folder you will put all your different projects
into. (or “1 Sarah folder”)

4. Click create

Sarah Folder

Making a Folder

5. Go back to “Project Explore” and select the
User Name you created from the drop down.
This is the folder you created

6. Click “+Add Project”
You are adding a project
to your folder Folder

Add a Project

Give your project a descriptive name
• Note: you will have a lot of student’s projects,

so maybe use their first name followed by the name of the activity.

• Do not put any special characters or periods, etc. on it.

Name your project

Click CreateSarah Hello World

1.Make sure you are in your user name/folder. Find your project name (in this
case Sarah Hello world.
2. Click “Compile” to translate your program to machine language.
Note: the “Compile” button sends the program to the robot.
3. Go to next slide

Folder

This will go away with
update 23. Update software
by going to www.kipr.org,
under software/hardware
tab

Compiling Your First Project

http://www.kipr.org

Compilation succeeded will appear!

1. Press (touch) the “Programs” button on the
KIPR Wallaby.

2. This will take you to a list of programs currently
on your Wallaby.

 Running your Program on Your Robot

Go to the next slide

Running your program (continued)

3. Select (touch) the name of the program you want to run.
• Note: in the example below, this is “Hello, World.c”.

4. Press (touch) the “Run” button on the Wallaby.

5. The phrase “Hello, World!” will appear on your

Wallaby screen.

 Running Your Program on the Wallaby (Cont.)

Learning About The C Template:
Hello, World!

Objectives: Students will develop an understanding of the components that
make the C Template: Hello, World

Materials:

Resource slides (Functions, Blocks of Code, Programming Statements,

Terminating Statements, Ending the main function, Program speed, Curly
Braces), science/engineering/robotics/digital notebooks, writing utensil

Lesson:

1. Provide student groups with a hand out of each resource slide.
2. Have students discuss within their groups and then share out to the class

as a whole or use other instructional strategies.
3. Students record the key information in their

science/engineering/robotics/digital notebooks.
4. Identify different components of the C Template.

https://k20center.ou.edu/instructional-strategies/
#

Learning About The C Template:
Hello, World!

#include <kipr/botbal.h>

int main ()
{

printf(“Hello World!\n”);
return 0:
}

Learning About The C Template:
Hello, World!

Components
1. Functions
2. Blocks of Code
3. Programming Statements
4. Terminating Statements
5. Ending the main function
6. Program speed
7. Curly Braces

Learning About The C Template:
Hello, World! - Functions

The KISS IDE contains a large library of functions you can use to program your robots.

A function is like a title to an instruction book. When you call the
function it does all of the commands in the book.

A “function” defines a list of actions to take.
A function is like a recipe for baking a cake.

When you “call” (use) the function,
the program follows the instructions and bakes the cake.

A clean_house() function could mean vacuum, dust, mop, change the
linens, wash the windows, etc… all the commands specified in the function are
executed.

// Created on Thu January 10 2013

int main()
{
 printf("Hello, World!\n");
 return 0;
}

This is the “main function”.

When you run your program,
the main function is executed.

Learning About The C Template: Hello, World!

Function Tent
Until you are familiar with the functions that you will be using
while programming , use your “Function Tent” for easy
reference. Copy and paste is also very helpful.

Printable Function
Tent

https://docs.google.com/a/kipr.org/document/d/1l1Bhvz1dKnEOQAUh9K9Y9-3h4UjN1iIoXXxwpl5MrRk/edit?usp=sharing
https://docs.google.com/a/kipr.org/document/d/1l1Bhvz1dKnEOQAUh9K9Y9-3h4UjN1iIoXXxwpl5MrRk/edit?usp=sharing
https://docs.google.com/a/kipr.org/document/d/1l1Bhvz1dKnEOQAUh9K9Y9-3h4UjN1iIoXXxwpl5MrRk/edit?usp=sharing

Learning About The C Template:
Hello, World!

Blocks of Code

int main()
{

 printf("Hello, World!\n");
 return 0;
}

Block of code

Learning About The C Template:
Hello, World!

Programming Statements

// Created on Thu January 10 2013

int main()
{
 printf("Hello, World!\n");

 return 0;
}

Inside the “block of code”
(between the { and } braces),
we write lines of code called
“programming statements”.

Each programming statement
is an action to be executed by
the computer (or robot)
in the order that it is listed.

There can be any number of
programming statements.

Statement #1 →

Statement #2 →

Learning About The C Template:

Hello, World!
Terminating Statement

// Created on Thu January 10 2013

int main()
{
 printf("Hello, World!\n");
 return 0;
}

Terminating statements end
each programming statement.
Use a semi-colon;
(unless it is followed by a new
block of code) to end the
programing statement.

This is similar to an English sentence, which ends with a period.
If an English statement is missing a period, then it is a run-on sentence.

A semi-colon is similar to an “enter” or “return” key on your keyboard, it tells
the computer to go to the next line.

Learning About The C Template:
Hello, World!

Ending the main() function

// Created on Thu January 10 2013

int main()
{
 printf("Hello, World!\n");
 return 0;
}

The main() function ends with a
return statement, which is
the response or answer to the
computer (or robot).

In this case, the “answer” back
to the computer is 0.

The return statement is the
last line before the } brace.

Learning About The C Template:
Hello, World!

Program Speed

Computers read a program just like you read a book, they start
at the top and go to the bottom. Computers read incredibly fast-
800 MILLION lines per second!

int main()
{

printf("Hello, World!\n");
 return 0;
}

STOP

START

Return 0

Print “Hello
World”

* The flow chart goes from top to bottom, left to right, line by
line (just like you read). The flowchart is pseudocode.

Learning About The C Template:
Hello, World!

Curly Braces

The curly braces organize everything you want the program to
do (execute) when the computer comes to the last curly brace it
will end the main program.

int main()
{

printf(“Hello World!\n”);
return 0;

}

Start

Stop
STOP

START

Return 0

#

• Comments appear in
green

• Key words appear in
bold blue

• Text strings appear
in red

• Numbers appear in
aqua

int main()
{
 printf("Hello, World!\n");
 return 0;
}

The KISS IDE highlights parts of a program to make it easier to read
• By default, the KISS IDE colors your code and adds line numbers

37

Looking at a Program
Colors

Learning About Comments
(Pseudocode)

1. Read and discuss with a partner this slide and the next slide to
understand Pseudocode.

Pseudocode means "false code".

Pseudocode can be used to comment on what you expect your
program to cause your robot to do, but that might not be what it
will actually do.

//1. Move forward

 //2. Turn Right

 //3. Stop

Why would it be important to
create pseudocode?

Learning About Comments
(Pseudocode)

• Comments as pseudocode help you keep track of what is going on in the

program.

• You can make a flow chart or list and then convert it to pseudocode.

• To make a comment two slash marks must be typed first: //

Complete Comment: //Prints Hello World to screen

• When you compile the program it will not execute the comment, but you can

see it.

Sample Program
int main()
{
 printf("Hello, World!\n"); // Prints Hello World to screen

return 0;
}

Why would you put a
comment here?

Add a Comment
 Activity 1

1. Add the //Print Hello world to screen comment to the program
• Just like using a word processing program you can click to set your cursor

and then use return to make space for the comment.
• Type the comment into your program. The comment can go on the line

before the printf function or on the same line as the function.
2. Continue to the next slide.

int main()
{
 printf("Hello, World!\n"); //Print Hello World to screen
 return 0;
}

On same line as the
function

Go to the next slide

Compile

Watch to see if it Succeeded!

Add a Comment (cont.)

Go to the next slide

Add a Comment (cont.)

Running your program on the Wallaby

1. Press (touch) the “Programs” button on the KIPR
Wallaby.

2. This will take you to a list of programs currently on your
Link.
1

2

Go to the next slide

Add a Comment (cont.)

*Notice that your comment did not show on the screen

3. Select (touch) the name of the program you want to run.
• Note: in the example below, this is “Hello, World.c”.

4. Press (touch) the “Run” button on the Wallaby.

Using printf() Function
 Activity 2

Objectives: Students will develop an understanding of the printf() function

Materials:

• Built robot, Computer, Mini USB cord

Lesson:

1. Read, discuss and follow the following slides.

Starting a New Project

Name Your New Project

Browse Folders

Adding a New File (2 Slides)

Adding a printf () Function (2 slides)

Solution

Compiling

Running Your Program (2 Slides)

Optional Lesson Extension

#
#
#
#
#
https://drive.google.com/open?id=1olOH-3AaOJEpipJyogwSbyjpX9koB1Yz7TD0rvgTG9Q

5. Go back to “Project Explore” and select the
User Name you created from the drop down.
This is the folder you created (if a newer
version doesn’t exist).

6. Click “+Add Project”
You are adding a project
to your folder.

Using printf() Function
Step 1 - Start Another New Project

Name your project “Name” Activity 2
• Note: you will have a lot of student’s projects,

so maybe use their first name followed by the name of the activity.

• Do not put any special characters or periods, etc. on it.

Name your project

Click CreateSarah Activity 2

1.Make sure you are in your user name/folder. Find your project name (in this
case Sarah Activity 2)
2. Click “Compile” to translate your program to machine language.
Note: the “Compile” button sends the program to the robot.

**Our example doesn’t have the project Sarah Activity 2

This will go away with
update 22, version 24 is
now available at kipr.org.

Using printf() Function
Adding your name to the screen

Write a program for the KIPR Wallaby that displays "Hello World!” and
then displays your “name”. Compile, download and run it on your
Wallaby.

Pseudocode (Task Analysis)

1. //Display "Hello World!" on the screen.
2. //Display your name on the screen.

Questions: What function do you think you are going to use to print your
name to the screen? Answer

Using printf() Function
Cont.

1. Add your comment after printf(“Hello, World!\n”);
2. Use the function printf to write your name.

3. Add the comment //print Your Name to the screen
after your printf

Example of Solution

Using printf() Function
Answer

int main()
{
 printf(“Hello, World!\n”); // print Hello, World! to the screen

 printf(“Hello, Sarah!\n”); // print Hello, Sarah! to the screen

 return 0;
}

1. Compile

2. Watch to see if it Succeeded!

Using printf() Function Step 6 - Compiling Your Program

Using printf() Function

Running Your Program

1. Select (touch) the name of the program you want to run.
• Note: in the example below, this is “Hello, World.c”.

2. Press (touch) the “Run” button on the Wallaby.

3. Continue to the next slide.

Using printf() Function
cont.

Running your program - Cont.

The phrase “Hello, World!” and “Your Name” will
appear on your Wallaby screen.

Print Function
Extensions

https://drive.google.com/open?id=1olOH-3AaOJEpipJyogwSbyjpX9koB1Yz7TD0rvgTG9Q
https://drive.google.com/open?id=1olOH-3AaOJEpipJyogwSbyjpX9koB1Yz7TD0rvgTG9Q

Making Observations
Activity 3

1. What did you notice when you ran the previous program?
2. Run your program again.

What observations can you make?

3. Turn to your elbow partner and discuss your observations.

Answer

Answer:
• “Hello World” statement and “your name”

statement appeared at almost the same time
• The two statements are on different lines

Questions:

Discuss with your elbow partner:

• Why did they appear at the same time?
• Read the next page for clarification

Making Observations
Activity 3 (Cont.)

Making Observations
Activity 3 (Cont.)

• The controller reads the code and goes to the next line faster
than a blink of your eye.

• At 800MHz the controller is executing ~800 Million lines of
code/second!

How do we slow down the controller?

• To control a robot you must give the function (command) TIME
to run on the robot.
– To do this, we use the built-in function called msleep().
– The msleep()command allows the program to pause
 (sleep) before it executes (runs) the next command.

Introduction msleep() Function
Activity 4

Step 1

Follow the Steps 1-10 in the following slides

Objectives: Students will develop an understanding of the msleep() function

Materials:

• Built robot, Computer

Lesson:

What does the msleep() function do?

• To control a robot you must give the function (command) TIME to run on the
robot

– To do this, we use the built-in function called msleep()
– The msleep() command allows the program to pause (sleep) before it

executes (runs) the next command

Introduction msleep() Function
Step 2

Like printf(), msleep() is a built-in (library) function.

msleep(1000) causes the program to “pause” for 1 second
(the m stands for milliseconds or 1/1000 of a second) before
going to the next line.

• Example:

printf(”Hello World!\n");
msleep(2000);
printf(”Name\n");

Tells the robot to wait for 2
seconds before going to the
next command.

Questions:
*How many seconds is 2000m? 3000m? How many milliseconds would
you need to run the robot for 4 seconds?

Introduction msleep() Function
Step 3

Write a program for the KIPR Wallaby that displays "Hello
World!" to the screen, delays two seconds, and then displays
your name on the screen.

Pseudocode (Task Analysis)

// 1. Display "Hello World!" on the screen.
// 2. Pause for 2 seconds.
// 3. Display your name on the screen.

STOP

START

Return 0

Print “Hello World”

Pause for 2 seconds

Print “your name”

Continue to the next slide for Activity instructions

Introduction msleep() Function
Step 4

1. Add a new project and name your new project (remember
you will have a lot of student’s projects- maybe use their first
name followed by the challenge # or activity). Name it
“Name Activity 3”

2. Go to the next slide for detailed directions.

1. Go back to “Project Explore” and select the
User Name you created from the drop down.
This is the folder you created.

2. Click “+Add Project”
You are adding a project

to your folder. “Name
Activity 3”

Introduction msleep() Function
Step 4

Introduction msleep() Function

 1. Print “Hello, World!”
 2. Wait for 2 seconds.
 3. Print your name.

Pseudocode as Comments
(notebook)

int main()
{
 printf("Hello, World!\n"); // print “Hello, World!”
 msleep(2000); // Wait for 2 seconds

 printf("Sarah\n"); // Print “Sarah” to screen.

 return 0;
}

Source Code
(Code in the KISS IDE)

Continue to next
slides to compile

1. Compile

2. Watch to see if it Succeeded!

Add a Comment

Introduction msleep() Function

1. Press (touch) the “Programs” button on the
KIPR Wallaby.

2. This will take you to a list of programs currently
on your Link.

Continue to next
slides to compile

Introduction msleep() Function

 Select (touch) the name of the program you want to run.

• Press (touch) the “Run” button on the Wallaby.

What did
you notice?

Debugging
Activity 5

Objectives: Students will learn the importance of and how to
debug their programs.

Materials:

• Built robot, Computer, Mini USB cord,

Lesson:

1. Follow the Steps 1-3 in the next slides.

Debugging

1. Leave off the terminating semicolon and see what happens.
2. Compile.
3. Go to the next slide to understand how to read errors.

\n doesn't show up on the printed output it simply tells the display to print
to a new line similar to the return key on a keyboard

int main()
{
 printf("Hello, World!\n"); // print Hello World
 msleep(2000); // Wait for 2 seconds

 printf("Sarah\n"); // Print Sarah to screen.

 return 0;
}

Debugging
Compile Failed “Debugging”

Example of an “Error Message” for missing a “;”
• Compile Failed will be the message at the bottom of the window

1. Reading the Error- Ignore the first line, and
look at the second line to find the error.

2. This error says that it expected to see a “;”
before “motor”

3. Fix one error at a time and then recompile.
It might fix all the errors.

Debugging

1. Spell msleep wrong. Compile and read the error.
What does it say?
– Spell it correctly and compile

2. Put a comma in the msleep(2,000). Compile and
read the error. What does it say?
– Take out the comma and compile

3. Remove a curly brace, compile, and read the error.
What does it say?
– Replace the curly brace and compile

4. Replace a 0 with the letter o, compile, and read the
error. What does it say?
– Replace the 0 and compile

Proceed to following
slides for sample

Debugging
Compile Failed “Debugging”

Example of an “Error Message” for misspelling “msleep”
• Compile Failed will be the message at the bottom of the window

1. Reading the Error- in this case go to the
bottom of the errors.

2. This error says undefined reference to
“msleep”. Spelled wrong.

3. Fix one error at a time and then recompile.
It might fix all the errors.

undefined reference is
always a spelling error.

Debugging
Compile Failed “Debugging”

Example of an “Error Message” for inserting a comma in the time for
milliseconds.

• Compile Failed will be the message at the bottom of the window

1. Reading the Error- in this case the error is
on line 8, “too many argument”.

2. msleep has only one argument of time.
The comma indicates that there is two
argument.

3. Fix one error at a time and then recompile.
It might fix all the errors.

Debugging
Compile Failed “Debugging”

Example of an “Error Message”for leaving off a “}”
• Compile Failed will be the message at the bottom of the window

1. Reading the Error- in this case the error is
on line 9, expected declaration or
statement at end of input.

2. Missing a “}” after return 0.
3. Fix one error at a time and then recompile.

It might fix all the errors.

Debugging
Compile Failed “Debugging”

Example of an “Error Message”for replace “o” for “0”
• Compile Failed will be the message at the bottom of the window

1. Reading the Error- in this case the error is
on line 9, ‘o’ undeclared (first use in this
function).

2. Used a “o” instead of an 0.
3. Fix one error at a time and then recompile.

It might fix all the errors.

Common Debugging Errors

Reading the Error- This error says that it expected to see a “;” before line 6. Therefore, line 6 is
where the error is.

Error Reason

● missing a “;”

● spelled msleep wrong

● missing the “int main”

● motor(0100) ; -is a mistake because it needs a
comma to indicate the two arguments of port,
and power.

● msleep(2,000); -is a mistake because the
comma indicates it has two arguments. This
function has only one argument of milliseconds
without a comma.

● a “}” is missing at the end of the program. Can
also indicate the “{“ is in the wrong direction if it
is there.

Have your students create a

similar table.

Common Debugging Errors

Reading the Error- This error says that it expected to see a “;” before line 6. Therefore, line
5 is where the error is, unless you have blank lines, then it refers to the closest line above 6.

Error Reason

● Undefined reference ● spelling error; spelled the function name
wrong. (spelling and case matter)

● Expected declaration or state at end of the
input

● a “}” is missing at the end of the program. Can
also indicate the “{“ is in the wrong direction
if it is there.

● Expected declaration specifiers ● a “{“ is missing after int main. Can also
indicate the “{“ is in the wrong direction.

● Expected identifier ● missing the “int main”.

● Too few arguments or two many arguments
to function msleep(2000); - has only one
argument between the parentheses.

● msleep(2,000); -is a mistake because the
comma indicates it has two arguments. This
function has only one argument of
milliseconds without a comma.

● motor(0100) ; -is a mistake because it
needs a comma to indicate the two
arguments of port, and power.

Create your own debugging
chart!

Have your students create a chart of common errors they have.

Assessments and Rubrics

Suggestions: Understanding rubric
and or Group Collaboration

https://docs.google.com/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit#slide=id.g160ba0e388_5_5
https://docs.google.com/presentation/d/1almnTUXLlvOTqFLo-M9KyWVCk8yKI86wS2Fm7QvGKGA/edit#slide=id.g160ba0e388_5_5

